
Advanced Topics in ClassificationAdvanced Topics in Classification
Multinomial logistic regression (++)Multinomial logistic regression (++)

July 14th, 2023July 14th, 2023

1 / 341 / 34

Example: NFL Expected Points
What does football play-by-play data look like? Each row is a play with contextual information:

Possession team: team with the ball, on offense (opposing team is on defense)

Down: 4 downs to advance the ball 10 (or more) yards

New set of downs, else turnover to defense

Yards to go: distance in yards to advance

Yard line: distance in yards away from opponent's endzone (100 to 0) - the field position

Time remaining: seconds remaining in game, each game is 3600 seconds long

4 quarters, halftime in between, followed by a potential overtime (900 seconds)

2 / 34

Example: NFL Expected Points
Drive: a series of plays, changes with possession and the types of scoring events:

No Score: 0 points - turnover the ball or half/game ends

Field Goal: 3 points - kick through opponent's goal post

Touchdown: 7 points - enter opponent's end zone

Safety: 2 points for opponent - tackled in own endzone

Next Score: type of next score (current drive or future drives) with respect to possession team

For: Touchdown (7), Field Goal (3), Safety (2)

Against: -Touchdown (-7), -Field Goal (-3), -Safety (-2)

No Score

Note: treating point-after-touchdown attempts (PATs) separately

3 / 34

Example: NFL Expected Points
Expected Points: Measure the value of play in terms of

i.e., historically, how many points have teams scored when in similar situations?

Explanatory variables: {down, yards to go, yard line, ...}

Want to estimate the probabilities of each scoring event to compute expected points:

Outcome probabilities:

Expected Points

How do we model more than two categories???

E[points of next scoring play]

X =

P(Y = y|X)

= E(Y |X) = ∑y∈Y y ⋅ P(Y = y|X)

4 / 34

Review: logistic regression
Response variable has two possible values: 1 or 0, we estimate the probability

Assuming that we are dealing with two classes, the possible observed values for are 0 and 1,

To limit the regression betweewn : use the logit function, aka the log-odds ratio

meaning

Y

p(x) = P(Y = 1|X = x)

Y

Y |x ∼ Binomial(n = 1, p = E[Y |x]) = Bernoulli(p = E[Y |x])

[0, 1]

logit(p(x)) = log[] = β0 + β1x1 + ⋯ + βpxp

p(x)

1 − p(x)

p(x) =
eβ0+β1x1+⋯+βpxp

1 + eβ0+β1x1+⋯+βpxp

5 / 34

Multinomial logistic regression
We can extend this to classes (via the softmax function):

We only estimate coefficients for classes relative to reference class

For example, let be the reference then we use logit transformations

Use for vector of coefficients and for matrix of predictors

K

P(Y = k∗ ∣ X = x) =
eβ0k∗+β1k∗x1+⋯+βpk∗xp

∑K
k=1 eβ0k+β1kx1+⋯+βpkxp

K − 1

K K − 1

β X

log() = β1 ⋅ X

log() = β2 ⋅ X

log() = βK−1 ⋅ X

P(Y =1∣X)

P(Y =K∣X)

P(Y =2∣X)

P(Y =K∣X)

P(Y =K−1∣X)

P(Y =K∣X)

6 / 34

https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Softmax_function

Multinomial logistic regression for next score
 {Touchdown (7), Field Goal (3), Safety (2), No Score (0), -Safety (-2), -Field Goal (-3), -Touchdown (-7)}

 {down, yards to go, yard line, ...}

Model is specified with six logit transformations relative to No Score:

Model is generating probabilities, agnostic of value associated with each next score type

Fit multinomial logistic regression model in R with nnet package

Y ∈

X =

log() = X ⋅ βTouchdown

log() = X ⋅ βField Goal ,

⋮

log() = X ⋅ β−Touchdown ,

P(Y = Touchdown ∣X)

P(Y = No Score ∣X)

P(Y = Field Goal ∣X)
P(Y = No Score ∣X)

P(Y =− Touchdown ∣X)
P(Y = No Score ∣X)

7 / 34

https://en.wikipedia.org/wiki/Multinomial_logistic_regression

NFL play-by-play data (2010 to 2020)

Initialized NFL play-by-play dataset with next score in half for each play

Followed steps in script by Ben Baldwin (which copies Prof. Yurko's steps here)

library(tidyverse)

nfl_ep_model_data <- readRDS(url("https://shorturl.at/BTVZ1"))

nfl_ep_model_data <- nfl_ep_model_data %>%

 mutate(Next_Score_Half = fct_relevel(Next_Score_Half, "No_Score"),

log transform of yards to go and indicator for two minute warning:

 log_ydstogo = log(ydstogo),

Changing down into a factor variable:

 down = factor(down))

How to fit the model?

init_ep_model <- multinom(Next_Score_Half ~ half_seconds_remaining + yardline_100 + down +

 log_ydstogo + log_ydstogo*down + yardline_100*down,

 data = nfl_ep_model_data, maxit = 300)

What does the summary() function return?

8 / 34

https://github.com/nflverse/nflfastR-data/blob/master/models/model_data.R
https://github.com/ryurko/nflscrapR-models/blob/master/R/init_models/init_ep_fg_models.R

Leave-one-season-out cross-validation

library(nnet)

init_loso_cv_preds <-

 map_dfr(unique(nfl_ep_model_data$season),

function(x) {

Separate test and training data:

 test_data <- nfl_ep_model_data %>% filter(season == x)

 train_data <- nfl_ep_model_data %>% filter(season != x)

Fit multinomial logistic regression model:

 ep_model <-

 multinom(Next_Score_Half ~ half_seconds_remaining + yardline_100 + down +

 log_ydstogo + log_ydstogo*down + yardline_100*down,

 data = train_data, maxit = 300)

Return dataset of class probabilities:

 predict(ep_model, newdata = test_data, type = "probs") %>%

 as_tibble() %>%

 mutate(Next_Score_Half = test_data$Next_Score_Half,

 season = x)

 })

9 / 34

Calibration results for each scoring event

ep_cv_loso_calibration_results <- init_loso_cv_preds %>%

 pivot_longer(No_Score:Touchdown,

 names_to = "next_score_type",

 values_to = "pred_prob") %>%

 mutate(bin_pred_prob = round(pred_prob / 0.05) * .05) %>%

 group_by(next_score_type, bin_pred_prob) %>%

 summarize(n_plays = n(),

 n_scoring_event = length(which(Next_Score_Half == next_score_type)),

 bin_actual_prob = n_scoring_event / n_plays,

 bin_se = sqrt((bin_actual_prob * (1 - bin_actual_prob)) / n_plays)) %>%

 ungroup() %>%

 mutate(bin_upper = pmin(bin_actual_prob + 2 * bin_se, 1),

 bin_lower = pmax(bin_actual_prob - 2 * bin_se, 0))

10 / 34

Calibration results for each scoring event

ep_cv_loso_calibration_results %>%

 mutate(next_score_type = fct_relevel(next_score_type, "Opp_Safety", "Opp_Field_Goal",

"Opp_Touchdown", "No_Score", "Safety", "Field_Goal",

"Touchdown"),

 next_score_type = fct_recode(next_score_type, "-Field Goal (-3)" = "Opp_Field_Goal",

"-Safety (-2)" = "Opp_Safety", "-Touchdown (-7)" = "Opp_Touchdown"

"Field Goal (3)" = "Field_Goal", "No Score (0)" = "No_Score",

"Touchdown (7)" = "Touchdown", "Safety (2)" = "Safety")) %>%

 ggplot(aes(x = bin_pred_prob, y = bin_actual_prob)) +

 geom_abline(slope = 1, intercept = 0, color = "black", linetype = "dashed") +

 geom_smooth(se = FALSE) +

 geom_point(aes(size = n_plays)) +

 geom_errorbar(aes(ymin = bin_lower, ymax = bin_upper)) + #coord_equal() +

 scale_x_continuous(limits = c(0,1)) +

 scale_y_continuous(limits = c(0,1)) +

 labs(size = "Number of plays", x = "Estimated next score probability",

 y = "Observed next score probability") +

 theme_bw() +

 theme(strip.background = element_blank(),

 axis.text.x = element_text(angle = 90),

 legend.position = c(1, .05), legend.justification = c(1, 0)) +

 facet_wrap(~ next_score_type, ncol = 4)

11 / 34

Calibration results for each scoring event

12 / 34

Multinomial classification with XGBoost
Use same NFL play-by-play dataset as before but get ready for XGBoost...

nfl_ep_model_data <- nfl_ep_model_data %>%

 mutate(Next_Score_Half = fct_relevel(Next_Score_Half,

"No_Score", "Safety", "Field_Goal", "Touchdown",

"Opp_Safety", "Opp_Field_Goal", "Opp_Touchdown"),

 next_score_label = as.numeric(Next_Score_Half) - 1)

model_variables <- c("half_seconds_remaining", "yardline_100", "down", "ydstogo")

XGBoost requires the multinomial categories to be numeric starting at 0

13 / 34

Leave-one-season-out cross-validation

xgb_loso_cv_preds <-

 map_dfr(unique(nfl_ep_model_data$season), function(x) {

Separate test and training data - scale variables:

 test_data <- nfl_ep_model_data %>% filter(season == x)

 test_data_x <- as.matrix(dplyr::select(test_data, model_variables))

 train_data <- nfl_ep_model_data %>% filter(season != x)

 train_data_x <- as.matrix(dplyr::select(train_data, model_variables))

 train_data_y <- train_data$next_score_label

 xgb_model <- xgboost(data = train_data_x, label = train_data_y, nrounds = 100,

 max_depth = 3, eta = 0.3, gamma = 0, colsample_bytree = 1,

 min_child_weight = 1, subsample = 1, nthread = 1,

 objective = 'multi:softprob', num_class = 7,

 eval_metric = 'mlogloss', verbose = 0)

 xgb_preds <- matrix(predict(xgb_model, test_data_x), ncol = 7, byrow = TRUE) %>%

 as_tibble()

 colnames(xgb_preds) <- c("No_Score", "Safety", "Field_Goal", "Touchdown",

"Opp_Safety", "Opp_Field_Goal", "Opp_Touchdown")

 xgb_preds %>%

 mutate(Next_Score_Half = test_data$Next_Score_Half,season = x)

 })
14 / 34

Calibration results for each scoring event

ep_cv_loso_calibration_results <- xgb_loso_cv_preds %>%

 pivot_longer(No_Score:Opp_Touchdown,

 names_to = "next_score_type",

 values_to = "pred_prob") %>%

 mutate(bin_pred_prob = round(pred_prob / 0.05) * .05) %>%

 group_by(next_score_type, bin_pred_prob) %>%

 summarize(n_plays = n(),

 n_scoring_event = length(which(Next_Score_Half == next_score_type)),

 bin_actual_prob = n_scoring_event / n_plays,

 bin_se = sqrt((bin_actual_prob * (1 - bin_actual_prob)) / n_plays)) %>%

 ungroup() %>%

 mutate(bin_upper = pmin(bin_actual_prob + 2 * bin_se, 1),

 bin_lower = pmax(bin_actual_prob - 2 * bin_se, 0))

15 / 34

Calibration results for each scoring event

ep_cv_loso_calibration_results %>%

 mutate(next_score_type = fct_relevel(next_score_type, "Opp_Safety", "Opp_Field_Goal",

"Opp_Touchdown", "No_Score", "Safety", "Field_Goal",

"Touchdown"),

 next_score_type = fct_recode(next_score_type, "-Field Goal (-3)" = "Opp_Field_Goal",

"-Safety (-2)" = "Opp_Safety", "-Touchdown (-7)" = "Opp_Touchdown"

"Field Goal (3)" = "Field_Goal", "No Score (0)" = "No_Score",

"Touchdown (7)" = "Touchdown", "Safety (2)" = "Safety")) %>%

 ggplot(aes(x = bin_pred_prob, y = bin_actual_prob)) +

 geom_abline(slope = 1, intercept = 0, color = "black", linetype = "dashed") +

 geom_smooth(se = FALSE) +

 geom_point(aes(size = n_plays)) +

 geom_errorbar(aes(ymin = bin_lower, ymax = bin_upper)) + #coord_equal() +

 scale_x_continuous(limits = c(0,1)) +

 scale_y_continuous(limits = c(0,1)) +

 labs(size = "Number of plays", x = "Estimated next score probability",

 y = "Observed next score probability") +

 theme_bw() +

 theme(strip.background = element_blank(),

 axis.text.x = element_text(angle = 90),

 legend.position = c(1, .05), legend.justification = c(1, 0)) +

 facet_wrap(~ next_score_type, ncol = 4)

16 / 34

Calibration results for each scoring event

17 / 34

Model Evaluation for Classification

Back to a binary example: NFL completion probability

Binary outcome model:

library(tidyverse)

nfl_passing_plays <-

 read_csv("https://shorturl.at/ADMWZ") %>%

Only keep rows with passer and receiver information known:

 filter(!is.na(passer_player_id), !is.na(receiver_player_id),

 !is.na(epa), !is.na(air_yards), !is.na(pass_location)) %>%

Combine passer and receiver unique IDs:

 mutate(passer_name_id = paste0(passer_player_name, ":", passer_player_id),

 receiver_name_id = paste0(receiver_player_name, ":", receiver_player_id))

Create train and test folds based on games:

set.seed(1985)

game_fold_table <- tibble(game_id = unique(nfl_passing_plays$game_id)) %>%

 mutate(game_fold = sample(rep(1:5, length.out = n()), n()))

nfl_passing_plays <- nfl_passing_plays %>% dplyr::left_join(game_fold_table, by = "game_id")

Y ∈ {Incomplete (0), Complete (1)}

18 / 34

Logistic regression review
Generate data of test predictions with particular model:

logit_cv_preds <-

 map_dfr(unique(nfl_passing_plays$game_fold),

function(test_fold) {

Separate test and training data:

 test_data <- nfl_passing_plays %>%

 filter(game_fold == test_fold)

 train_data <- nfl_passing_plays %>%

 filter(game_fold != test_fold)

Train model:

 logit_model <- glm(complete_pass ~ yardline_100 + shotgun + air_yards +

 pass_location + qb_hit,

 data = train_data,family = "binomial")

Return tibble of holdout results:

 tibble(test_pred_probs = predict(logit_model, newdata = test_data,

 type = "response"),

 test_actual = test_data$complete_pass,

 game_fold = test_fold)

 })

19 / 34

Holdout performance by fold

logit_cv_preds %>%

 mutate(test_pred = ifelse(test_pred_probs < .5, 0, 1)) %>%

 group_by(game_fold) %>%

 summarize(mcr = mean(test_pred != test_actual))

A tibble: 5 × 2

game_fold mcr

<int> <dbl>

1 1 0.284

2 2 0.291

3 3 0.294

4 4 0.281

5 5 0.307

Let's think more carefully about what's going on here...

20 / 34

Evaluating the prediction threshold

We can really write our classification as a function of some cutoff :

Given the classifications, we can form a confusion matrix:

c

Ŷ = Ĉ(x) = {
1 p̂(x) > c

0 p̂(x) ≤ c

21 / 34

We want to maximize all of the following (positive means 1, negative means 0):

Accuracy: How often is the classifier correct?

Precision: How often is it right for predicted positives?

Sensitivity, aka true positive rate (TPR) or power: How often does it detect positives?

Specificity, aka true negative rate (TNR), or 1 - false positive rate (FPR): How often does it detect
negatives?

So how do we handle this?

TP+TN

total

TP
TP+FP

TP
TP+FN

TN

TN+FP

22 / 34

We want to balance with high power and low false positive rate

23 / 34

Receiver Operating Characteristic (ROC) curve

Check all possible values for the cutoff , plot the power against false positive rate

Want to maximize the area under the curve (AUC)

c

24 / 34

d stands for disease status (the outcome)

m stands for marker (the prediction)

library(plotROC)

logit_cv_preds %>%

 ggplot() +

 geom_roc(aes(d = test_actual,

 m = test_pred_probs),

 labelround = 4) +

 style_roc() +

 geom_abline(slope = 1, intercept = 0,

 linetype = "dashed",

 color = "gray") +

 labs(color = "Test fold")

with(logit_cv_preds,

 MLmetrics::AUC(test_pred_probs, test_act ## [1] 0.6957778

plotROC and holdout AUC

25 / 34

https://cran.r-project.org/web/packages/plotROC/vignettes/examples.html

logit_cv_preds %>%

 ggplot() +

 geom_roc(aes(d = test_actual,

 m = test_pred_probs,

 color = as.factor(game_fold)),

 n.cuts = 0) +

 style_roc() +

 geom_abline(slope = 1, intercept = 0,

 linetype = "dashed",

 color = "gray") +

 ggthemes::scale_color_colorblind() +

 labs(color = "Test fold") +

 theme(legend.position = "bottom")

logit_cv_preds %>% group_by(game_fold) %>%

 summarize(auc = MLmetrics::AUC(test_pred_pr

 test_actual)

There is definitely room for improvement...

A tibble: 5 × 2

game_fold auc

<int> <dbl>

1 1 0.707

2 2 0.686

3 3 0.699

4 4 0.700

5 5 0.690

plotROC and holdout AUC by test fold

26 / 34

https://cran.r-project.org/web/packages/plotROC/vignettes/examples.html

Tree-based approach?
We need to first convert categorical variables into dummy indicators:

model_data <- nfl_passing_plays %>%

 mutate(play_id = 1:n(),

 complete_pass = as.factor(complete_pass)) %>%

 dplyr::select(play_id, complete_pass, yardline_100, shotgun, air_yards, qb_hit,

 game_fold, pass_location) %>%

 mutate(pass_location_val = 1) %>%

 pivot_wider(id_cols = play_id:game_fold,

 names_from = pass_location, values_from = pass_location_val,

 values_fill = 0) %>%

 dplyr::select(-play_id)

27 / 34

Random forests using probability forest
For each tree compute class proportion in terminal node, then take average across all trees

library(ranger)

rf_prob_cv_preds <-

 map_dfr(unique(model_data$game_fold),

function(test_fold) {

Separate test and training data - scale variables:

 test_data <- model_data %>% filter(game_fold == test_fold)

 train_data <- model_data %>% filter(game_fold != test_fold)

 rf_prob_model <-

 ranger(complete_pass ~ ., data = dplyr::select(train_data, -game_fold),

 probability = TRUE)

Return tibble of holdout results:

 tibble(test_pred_probs =

 as.numeric(predict(rf_prob_model, data = test_data,

 type = "response")$predictions[,2]),

 test_actual = as.numeric(test_data$complete_pass) - 1,

 game_fold = test_fold)

 })
28 / 34

rf_prob_cv_preds %>%

 ggplot() +

 geom_roc(aes(d = test_actual,

 m = test_pred_probs,

 color = as.factor(game_fold)),

 n.cuts = 0) +

 style_roc() +

 geom_abline(slope = 1, intercept = 0,

 linetype = "dashed",

 color = "gray") +

 ggthemes::scale_color_colorblind() +

 labs(color = "Test fold") +

 theme(legend.position = "bottom")

rf_prob_cv_preds %>% group_by(game_fold) %>%

 summarize(auc = MLmetrics::AUC(test_pred_pr

 test_actual)

Looks like just a modest improvement

A tibble: 5 × 2

game_fold auc

<int> <dbl>

1 1 0.717

2 2 0.705

3 3 0.707

4 4 0.708

5 5 0.704

Random forests using probability forest

29 / 34

XGBoost!

library(xgboost)

xgb_cv_preds <-

 map_dfr(unique(model_data$game_fold),

function(test_fold) {

Separate test and training data - scale variables:

 test_data <- model_data %>% filter(game_fold == test_fold)

 test_data_x <- as.matrix(dplyr::select(test_data, -complete_pass, -game_fold))

 train_data <- model_data %>% filter(game_fold != test_fold)

 train_data_x <- as.matrix(dplyr::select(train_data, -complete_pass, -game_fold))

 train_data_y <- as.numeric(train_data$complete_pass) - 1

 xgb_model <- xgboost(data = train_data_x, label = train_data_y,

 nrounds = 100, max_depth = 3, eta = 0.3,

 gamma = 0, colsample_bytree = 1, min_child_weight = 1,

 subsample = 1, nthread = 1,

 objective = 'binary:logistic', eval_metric = 'auc',

 verbose = 0)

Return tibble of holdout results:

 tibble(test_pred_probs =

 as.numeric(predict(xgb_model, newdata = test_data_x, type = "response")),

 test_actual = as.numeric(test_data$complete_pass) - 1,

 game_fold = test_fold)

})

30 / 34

xgb_cv_preds %>%

 ggplot() +

 geom_roc(aes(d = test_actual,

 m = test_pred_probs,

 color = as.factor(game_fold)),

 n.cuts = 0) +

 style_roc() +

 geom_abline(slope = 1, intercept = 0,

 linetype = "dashed",

 color = "gray") +

 ggthemes::scale_color_colorblind() +

 labs(color = "Test fold") +

 theme(legend.position = "bottom")

xgb_cv_preds %>% group_by(game_fold) %>%

 summarize(auc = MLmetrics::AUC(test_pred_pr

 test_actual)

Should actually tune this more...

A tibble: 5 × 2

game_fold auc

<int> <dbl>

1 1 0.712

2 2 0.708

3 3 0.711

4 4 0.708

5 5 0.697

XGBoost

31 / 34

bind_rows(

 mutate(logit_cv_preds, type = "logit"),

 mutate(rf_prob_cv_preds, type = "RF"),

 mutate(xgb_cv_preds, type = "XGBoost")) %>%

 ggplot() +

 geom_roc(aes(d = test_actual,

 m = test_pred_probs,

 color = type),

 n.cuts = 0) +

 style_roc() +

 geom_abline(slope = 1, intercept = 0,

 linetype = "dashed",

 color = "gray") +

 ggthemes::scale_color_colorblind() +

 labs(color = "Model") +

 theme(legend.position = "bottom")

Pretty similar performance across all models...

All together now...

32 / 34

Explaining predictions with SHAP-values

SHAP-values are based on Shapley values (an idea from game theory) and are used to measure the
contributions from each feature in the model to the prediction for an individual observation

Shapley value for feature value for observation can be interpreted as:

the value of feature contributed to the prediction of observation compared to the average
prediction for the dataset

linear regression coefficients function in the same way

Can use them in multiple ways:

View total importance:

View distribution of for each feature

Plot against feature value for partial dependence

ϕ
j

i
j i

j ϕ
j

i
i

∑ |ϕj

i |
1
n

ϕ
j

i

ϕ
j

i

33 / 34

https://christophm.github.io/interpretable-ml-book/shap.html
https://christophm.github.io/interpretable-ml-book/shapley.html

SHAPforxgboost

Fit model on full data then extract SHAP-values with SHAPforxgboost

train_data_x <- as.matrix(dplyr::select(model_data, -complete_pass, -game_fold))

train_data_y <- as.numeric(model_data$complete_pass) - 1

xgb_model <- xgboost(data = train_data_x, label = train_data_y, nrounds = 100, max_depth = 3,

 eta = 0.3, gamma = 0, colsample_bytree = 1, min_child_weight = 1,

 subsample = 1, nthread = 1, objective = 'binary:logistic',

 eval_metric = 'auc', verbose = 0)

library(SHAPforxgboost)

shap_value_list <- shap.values(xgb_model, X_train = train_data_x)

shap.plot.summary.wrap1(xgb_model, X = train_data_x)

34 / 34

https://cran.r-project.org/web/packages/SHAPforxgboost/readme/README.html
https://www.kaggle.com/rikdifos/shap-make-algorithms-interpretable

