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Model �exibility vs interpretability
Figure 2.7, Introduction to Statistical Learning with Applications in R (ISLR)

Tradeoff between model's flexibility (i.e. how "curvy" it is) and how interpretable it is

Simpler, parametric form of the model  the easier it is to interpret⇒
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https://www.statlearning.com/


Model �exibility vs interpretability

Parametric models, for which we can write down a mathematical expression for  before observing
the data, a priori (e.g. linear regression), are inherently less flexible

Nonparametric models, in which  is estimated from the data (e.g. kernel regression)

f(X)

f(X)
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Recall: K Nearest Neighbors (KNN)
Find the  data points closest to an observation , use these to predict

Regression:  (average response)

Classification:  (majority vote)

Determining the optimal value of  requires balancing bias and variance

k x

Ŷ |X = ∑k

i=1 Yi
1
k

P̂ [Y = j|X] = ∑k

i=1 1(Yi = j)1
k

k
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Averaging with Neighbors?? Kernels!!
A kernel  is a weighting function used in estimators, and technically has only one required property:

 for all 

However, in the manner that kernels are used in statistics, there are two other properties that are usually
satisfied:

; and

 for all .

In short: a kernel is a symmetric PDF!

K(x)

K(x) ≥ 0 x

∫ ∞

−∞
K(x)dx = 1

K(−x) = K(x) x
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Recall: Kernel density estimation
Goal: estimate the PDF  for all possible values (assuming it is continuous / smooth)

 sample size,  new point to estimate  (does NOT have to be in dataset!)

 bandwidth, analogous to histogram bin width, ensures  integrates to 1

 th observation in dataset

 is the Kernel function, creates weight given distance of th observation from new point

as  then , i.e. further apart th row is from , smaller the weight

as bandwidth  weights are more evenly spread out (as  more concentrated around )

typically use Gaussian / Normal kernel: 

 is large when  is close to 

f(x)

Kernel density estimate: f̂ (x) =
n

∑
i=1

Kh(x − xi)
1

n

1

h

n = x = f(x)

h = f̂ (x)

xi = i

Kh(x − xi) i

|x − xi| → ∞ Kh(x − xi) → 0 i x

h ↑ h ↓ x

∝ e−(x−xi)
2/2h2

Kh(x − xi) xi x
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https://en.wikipedia.org/wiki/Normal_distribution


Commonly Used Kernels

A general rule of thumb: the choice of kernel will have little effect on estimation, particularly if the sample
size is large! The Gaussian kernel (i.e., a normal PDF) is by far the most common choice, and is the default for
R functions that utilize kernels.
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Kernel regression
We can apply kernels in the regression setting as well as in the density estimation setting!

The classic kernel regression estimator is the Nadaraya-Watson estimator:

where

Regression estimate is the average of all the weighted observed response values;

Farther  is from observation  less weight that observation has in determining the regression estimate
at 

ŷh(x) =
n

∑
i=1

wi(x)Yi ,

wi(x) = .
K ( )x−Xi

h

∑n

j=1 K ( )
x−Xj

h

x ⇒
x
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Kernel regression
Nadaraya-Watson kernel regression

given training data with explanatory variable  and continuous response 

bandwidth 

and a new point :

where

Example of a linear smoother

class of models where predictions are weighted sums of the response variable

x y

h > 0

(xnew, ynew)

ŷnew =
n

∑
i=1

wi(xnew) ⋅ yi ,

wi(x) =  with Kh(x) = K( )
Kh (|xnew − xi|)

∑n

j=1 Kh (|xnew − xj|)

x

h
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Local regression
We can fit a linear model at each point  with weights given by kernel function centered on 

we can additionally combine this with polynomial regression

Local regression of the  order with kernel function  solves the following:

Yes, this means every single observation has its own set of coefficients

Predicted value is then:

Smoother predictions than kernel regression but comes at higher computational cost

LOESS replaces kernel with k nearest neighbors

faster than local regression but discontinuities when neighbors change

xnew xnew

kth K

β̂(xnew) = arg min
β

{∑
i

Kh(|xnew − xi|) ⋅ (yi −
k

∑
j=0

xk
i

⋅ βk)2}

ŷnew =
k

∑
j=0

xknew ⋅ β̂k(xnew)
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Smoothing splines
Use smooth function  to predict , control smoothness directly by minimizing the spline objective
function:

Estimate the smoothing spline  that balances the tradeoff between the model fit and wiggliness

s(x) y

n

∑
i=1

(yi − s(xi))2 + λ∫ (s′′(x))2dx

= fit data + impose smoothness

⇒ model fit = likelihood − λ ⋅ wiggliness

ŝ(x)
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Basis functions
Splines are piecewise cubic polynomials with knots (boundary points for functions) at every data point

Practical alternative: linear combination of set of basis functions

Cubic polynomial example: define four basis functions:

, , , 

where the regression function  is written as:

linear in the transformed variables  but it is nonlinear in 

We extend this idea for splines piecewise using indicator functions so the spline is a weighted sum:

B1(x) = 1 B2(x) = x B3(x) = x2 B4(x) = x3

r(x)

r(x) =
4

∑
j

βjBj(x)

B1(x), … ,B4(x) x

s(x) =
m

∑
j

βjBj(x)
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Number of basis functions is another tuning parameter
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Generalized additive models (GAMs)
GAMs were created by Trevor Hastie and Rob Tibshirani in 1986 with intuitive construction:

relationships between individual explanatory variables and the response variable are smooth (either
linear or nonlinear via basis functions)

estimate the smooth relationships simultaneously to predict the response by just adding them up

Generalized like GLMs where  is the link function for the expected value of the response  and
additive over the  variables:

can be a convenient balance between flexibility and interpretability

you can combine linear and nonlinear terms!

g() E(Y )
p

g(E(Y )) = β0 + s1(x1) + s2(x2) + ⋯ + sp(xp)
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https://projecteuclid.org/euclid.ss/1177013604


Example: predicting MLB HR probability
Used the baseballr package to scrape all batted-balls from 2022 season:

library(tidyverse)

batted_ball_data <- read_csv("https://shorturl.at/moty2") %>%

  mutate(is_hr = as.numeric(events == "home_run")) %>%

  filter(!is.na(launch_angle), !is.na(launch_speed),

         !is.na(is_hr))

head(batted_ball_data)

## # A tibble: 6 × 32

##   player_name    batter stand events     hc_x  hc_y hit_distance_sc launch_speed

##   <chr>           <dbl> <chr> <chr>     <dbl> <dbl>           <dbl>        <dbl>

## 1 Daza, Yonathan 602074 R     force_out 103.  150.               18         97.4

## 2 Robles, Victor 645302 R     single     58.6 120.              158         80.2

## 3 Hoerner, Nico  663538 R     field_out  99.3 166.               20        101. 

## 4 Clemens, Kody  665019 L     field_out 126.  191.              165         84  

## 5 Rosario, Amed  642708 R     field_out  97.4 170.                9         94.3

## 6 Castro, Willi  650489 L     sac_fly   178.   58.9             369         96  

## # ℹ 24 more variables: launch_angle <dbl>, hit_location <dbl>, bb_type <chr>,
## #   barrel <dbl>, pitch_type <chr>, release_speed <dbl>, effective_speed <dbl>,

## #   if_fielding_alignment <chr>, of_fielding_alignment <chr>, game_date <date>,

## #   balls <dbl>, strikes <dbl>, outs_when_up <dbl>, on_1b <dbl>, on_2b <dbl>,

## #   on 3b <dbl>, inning <dbl>, inning topbot <chr>, home score <dbl>,
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http://billpetti.github.io/baseballr/


batted_ball_data %>%

  ggplot(aes(x = launch_speed, 

             y = launch_angle,

             color = as.factor(is_hr))) +

  geom_point(alpha = 0.5) +

  ggthemes::scale_color_colorblind(

    labels = c("No", "Yes")) +

  labs(x = "Exit velocity", 

       y = "Launch angle", 

       color = "HR?") +

  theme_bw() +

  theme(legend.position = "bottom")

HRs are relatively rare and confined to one
area of this plot

Predict HRs with launch angle and exit velocity?
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Fitting GAMs with mgcv
First set-up training data

set.seed(2004)

batted_ball_data <- batted_ball_data %>%

  mutate(is_train = sample(rep(0:1, length.out = nrow(batted_ball_data))))

Next fit the initial function using smooth functions via s():

library(mgcv)

init_logit_gam <- gam(is_hr ~ s(launch_speed) + s(launch_angle),

                      data = filter(batted_ball_data, is_train == 1), 

                      family = binomial, method = "REML")

Use REML instead of the default for more stable solution
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https://cran.r-project.org/web/packages/mgcv/index.html
https://en.wikipedia.org/wiki/Restricted_maximum_likelihood


GAM summary

summary(init_logit_gam)

## 

## Family: binomial 

## Link function: logit 

## 

## Formula:

## is_hr ~ s(launch_speed) + s(launch_angle)

## 

## Parametric coefficients:

##             Estimate Std. Error z value Pr(>|z|)   

## (Intercept)   -26.96      10.31  -2.614  0.00895 **

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Approximate significance of smooth terms:

##                   edf Ref.df Chi.sq p-value    

## s(launch_speed) 1.000  1.000  151.5  <2e-16 ***

## s(launch_angle) 2.962  3.305  112.0  <2e-16 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## R-sq.(adj) =  0.588   Deviance explained = 68.3%

## REML = 231 49 Scale est = 1 n = 3517
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Visualizing partial response functions with gratia

Displays the partial effect of each term in the model  add up to the overall prediction

library(gratia)

draw(init_logit_gam)

⇒
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https://gavinsimpson.github.io/gratia/index.html


Convert to probability scale with plogis function

draw(init_logit_gam, fun = plogis)

centered on average value of 0.5 because it's the partial effect without the intercept
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Include intercept in plot...

draw(init_logit_gam, fun = plogis, constant = coef(init_logit_gam)[1])

Intercept reflects relatively rare occurence of HRs!
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Model checking for number of basis functions
Use gam.check() to see if we need more basis functions based on an approximate test

gam.check(init_logit_gam)

## 

## Method: REML   Optimizer: outer newton

## full convergence after 11 iterations.

## Gradient range [-5.632542e-05,-2.964163e-06]

## (score 231.4864 & scale 1).

## Hessian positive definite, eigenvalue range [5.631851e-05,0.8679399].

## Model rank =  19 / 19 

## 

## Basis dimension (k) checking results. Low p-value (k-index<1) may

## indicate that k is too low, especially if edf is close to k'.

## 

##                   k'  edf k-index p-value  

## s(launch_speed) 9.00 1.00    1.05    1.00  

## s(launch_angle) 9.00 2.96    0.97    0.08 .

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Check the predictions?

batted_ball_data <- batted_ball_data %>%

  mutate(init_gam_hr_prob = 

           as.numeric(predict(init_logit_gam,

                              newdata = batted_ball_data,

                              type = "response")),

         init_gam_hr_class = as.numeric(init_gam_hr_prob >= 0.5))

batted_ball_data %>%

  group_by(is_train) %>%

  summarize(correct = mean(is_hr == init_gam_hr_class))

## # A tibble: 2 × 2

##   is_train correct

##      <int>   <dbl>

## 1        0   0.977

## 2        1   0.972
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What about the linear model?

init_linear_logit <- glm(is_hr ~ launch_speed + launch_angle, 

                         data = filter(batted_ball_data, is_train == 1), 

                         family = binomial)

batted_ball_data <- batted_ball_data %>%

  mutate(init_glm_hr_prob = predict(init_linear_logit,

                                    newdata = batted_ball_data,

                                    type = "response"),

         init_glm_hr_class = as.numeric(init_glm_hr_prob >= 0.5))

batted_ball_data %>%

  group_by(is_train) %>%

  summarize(correct = mean(is_hr == init_glm_hr_class))

## # A tibble: 2 × 2

##   is_train correct

##      <int>   <dbl>

## 1        0   0.960

## 2        1   0.951

Very few situations in reality where linear regressions perform better than an additive model using
smooth functions - especially since smooth functions can just capture linear models...
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Some useful resources
GAMs in R by Noam Ross

mgcv course

Stitch Fix post: GAM: The Predictive Modeling Silver Bullet

Chapters 7 and 8 of Advanced Data Analysis from an Elementary Point of View by Prof Cosma Shalizi

I strongly recommend you download this book, and you will refer back to it for the rest of your life
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https://noamross.github.io/gams-in-r-course/
https://eric-pedersen.github.io/mgcv-esa-workshop/
https://multithreaded.stitchfix.com/blog/2015/07/30/gam/
https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf

