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What is the goal of dimension reduction?
We have  variables (columns) for  observations (rows) BUT which variables are interesting?

Can we find a smaller number of dimensions that captures the interesting structure in the data?

Could examine all pairwise scatterplots of each variable - tedious, manual process

Tuesday: clustered variables based on correlation

Can we find a combination of the original  variables?

Dimension reduction:

Focus on reducing the dimensionality of the feature space (i.e., number of columns),

While retaining most of the information / variability in a lower dimensional space (i.e., reducing the
number of columns)
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Principal components analysis (PCA)
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https://en.wikipedia.org/wiki/Principal_component_analysis


Principal components analysis (PCA)
PCA explores the covariance between variables, and combines variables into a smaller set of
uncorrelated variables called principal components (PCs)

PCs are weighted, linear combinations of the original variables

Weights reveal how different variables are loaded into the PCs

We want a small number of PCs to explain most of the information / variance in the data

First principal component:

 are the weights indicating the contributions of each variable 

Weights are normalized 

 is the loading vector for PC1

 is a linear combination of the  variables that has the largest variance

Z1 = ϕ11X1 + ϕ21X2 + ⋯ + ϕp1Xp

ϕj1 j ∈ 1, … , p

∑p

j=1 ϕ2
j1 = 1

ϕ1 = (ϕ11, ϕ21, … , ϕp1)

Z1 p
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https://en.wikipedia.org/wiki/Principal_component_analysis


Principal components analysis (PCA)
Second principal component:

 are the weights indicating the contributions of each variable 

Weights are normalized 

 is the loading vector for PC2

 is a linear combination of the  variables that has the largest variance

Subject to constraint it is uncorrelated with 

We repeat this process to create  principal components

Z2 = ϕ12X1 + ϕ22X2 + ⋯ + ϕp2Xp

ϕj2 j ∈ 1, … , p

∑p

j=1 ϕ2
j1 = 1

ϕ2 = (ϕ12, ϕ22, … , ϕp2)

Z2 p

Z1

p
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https://en.wikipedia.org/wiki/Principal_component_analysis


Visualizing PCA in two dimensions
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https://www.stevejburr.com/post/scatter-plots-and-best-fit-lines/
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Visualizing PCA in two dimensions
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Searching for variance in orthogonal directions
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PCA: singular value decomposition (SVD)

Matrices  and  contain the left and right (respectively) singular vectors of scaled matrix 

 is the diagonal matrix of the singular values

SVD simplifies matrix-vector multiplication as rotate, scale, and rotate again

 is called the loading matrix for  with  as columns,

 is the PC matrix

BONUS eigenvalue decomposition (aka spectral decomposition)

 are the eigenvectors of  (covariance matrix,  means transpose)

 are the eigenvectors of 

The singular values (diagonal of ) are square roots of the eigenvalues of  or 

Meaning that 

X = UDV T

U V X

D

V X ϕj

Z = XV

V XT X T

U XXT

D XT X XXT

Z = UD
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https://en.wikipedia.org/wiki/Singular_value_decomposition


Eigenvalues solve time travel?
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Probably not... but they guide dimension reduction
We want to choose  such that we are explaining variation in the data

Eigenvalues  for  indicate the variance explained by each component

, meaning  indicates  contains at least one variable's worth in variability

 equals proportion of variance explained by 

Arranged in descending order so that  is largest eigenvalue and corresponds to PC1

Can compute the cumulative proportion of variance explained (CVE) with  components:

Can use scree plot to plot eigenvalues and guide choice for  by looking for "elbow" (rapid to slow
change)

p∗ < p

λj j ∈ 1, … , p

∑p

j λj = p λj ≥ 1 PCj

λj/p PCj

λ1

p∗

CVEp∗ =
∑p∗

j λj

p

p∗ < p
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https://en.wikipedia.org/wiki/Scree_plot


Example data: NFL teams summary
Created dataset using nflfastR summarizing NFL team performances from 1999 to 2021

library(tidyverse)

nfl_teams_data <- read_csv("https://shorturl.at/cfmpW")

nfl_model_data <- nfl_teams_data %>%

  mutate(score_diff = points_scored - points_allowed) %>%

# Only use rows with air yards

  filter(season >= 2006) %>%

  dplyr::select(-wins, -losses, -ties, -points_scored, -points_allowed, -season, -team)

dim(nfl_model_data)

## [1] 512  49

15 / 23

https://www.nflfastr.com/


NFL PCA example
Use the prcomp function (uses SVD) for PCA on centered and scaled data

model_x <- as.matrix(dplyr::select(nfl_model_data, -score_diff))

pca_nfl <- prcomp(model_x, center = TRUE, scale = TRUE) #<<x

summary(pca_nfl)

## Importance of components:

##                           PC1    PC2    PC3     PC4     PC5     PC6     PC7

## Standard deviation     3.2060 3.1026 2.3257 2.04728 1.52301 1.40350 1.35714

## Proportion of Variance 0.2141 0.2006 0.1127 0.08732 0.04832 0.04104 0.03837

## Cumulative Proportion  0.2141 0.4147 0.5274 0.61468 0.66301 0.70405 0.74242

##                            PC8     PC9    PC10    PC11    PC12    PC13    PC14

## Standard deviation     1.26250 1.14773 1.09881 1.01200 0.95689 0.93513 0.85233

## Proportion of Variance 0.03321 0.02744 0.02515 0.02134 0.01908 0.01822 0.01513

## Cumulative Proportion  0.77562 0.80307 0.82822 0.84956 0.86863 0.88685 0.90199

##                           PC15    PC16    PC17    PC18    PC19   PC20    PC21

## Standard deviation     0.82315 0.77434 0.65692 0.64016 0.60076 0.5796 0.56756

## Proportion of Variance 0.01412 0.01249 0.00899 0.00854 0.00752 0.0070 0.00671

## Cumulative Proportion  0.91610 0.92859 0.93758 0.94612 0.95364 0.9606 0.96735

##                           PC22    PC23    PC24    PC25    PC26    PC27    PC28

## Standard deviation     0.51349 0.47233 0.46768 0.41284 0.35810 0.33597 0.32018

## Proportion of Variance 0.00549 0.00465 0.00456 0.00355 0.00267 0.00235 0.00214

## Cumulative Proportion  0.97284 0.97749 0.98205 0.98560 0.98827 0.99062 0.99276
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library(broom)

pca_nfl %>%

  tidy(matrix = "eigenvalues") %>%

  ggplot(aes(x = PC, y = percent)) +

  geom_line() + geom_point() +

  geom_hline(yintercept = 1 / ncol(model_x),

             color = "darkred", 

             linetype = "dashed") +

  theme_bw()

Add reference line at , why?

Proportion of variance explained
prcomp$sdev corresponds to the singular values, i.e., , what is pca_nfl$sdev^2 / ncol(model_x)?

Can use the broom package easily tidy prcomp summary for plotting

√λj

1/p
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Can augment dataset with PC scores for plotting

Add team and season for context

pca_nfl %>%

  augment(nfl_model_data) %>%

  bind_cols({

    nfl_teams_data %>% 

      filter(season >= 2006) %>%

      dplyr::select(season, team)

  }) %>%

  unite("team_id", team:season, sep = "-",

        remove = FALSE) %>%

  ggplot(aes(x = .fittedPC1, y = .fittedPC2, 

             color = season)) +

  geom_text(aes(label = team_id), alpha = 0.9

  scale_color_gradient(low = "purple", high =

  theme_bw() + theme(legend.position = "botto

Display data in lower dimensions
prcomp$x corresponds to the matrix of principal component scores, i.e., Z = XV
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arrow_style <- arrow(

  angle = 20, ends = "first", type = "closed"

  length = grid::unit(8, "pt")

)

library(ggrepel)

pca_nfl %>%

  tidy(matrix = "rotation") %>%

  pivot_wider(names_from = "PC", names_prefix

              values_from = "value") %>%

  mutate(stat_type = ifelse(str_detect(column

"offense", "defen

  ggplot(aes(PC1, PC2)) +

  geom_segment(xend = 0, yend = 0, arrow = ar

  geom_text_repel(aes(label = column, color =

                  size = 3) +

  scale_color_manual(values = c("darkred", "d

  theme_bw() +

  theme(legend.position = "bottom")

What are the loadings of these dimensions?
prcomp$rotation corresponds to the loading matrix, i.e., V
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https://clauswilke.com/blog/2020/09/07/pca-tidyverse-style/


PCA analysis with factoextra
Visualize the proportion of variance explained by each PC with factoextra

library(factoextra)

fviz_eig(pca_nfl)
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http://www.sthda.com/english/wiki/factoextra-r-package-easy-multivariate-data-analyses-and-elegant-visualization


PCA analysis with factoextra
Display observations with first two PC

fviz_pca_ind(pca_nfl)
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PCA analysis with factoextra
Projection of variables - angles are interpreted as correlations, where negative correlated values point to
opposite sides of graph

fviz_pca_var(pca_nfl)
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PCA analysis with factoextra
Biplot displays both the space of observations and the space of variables

Arrows represent the directions of the original variables

fviz_pca_biplot(pca_nfl)
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