Dimension Reduction

Principal components analysis (PCA)
July 10th, 2023

What is the goal of dimension reduction?

We have p variables (columns) for n observations (rows) BUT which variables are interesting?
Can we find a smaller number of dimensions that captures the interesting structure in the data?

- Could examine all pairwise scatterplots of each variable - tedious, manual process
- Tuesday: clustered variables based on correlation
- Can we find a combination of the original p variables?

Dimension reduction:

- Focus on reducing the dimensionality of the feature space (i.e., number of columns),
- While retaining most of the information / variability in a lower dimensional space (i.e., reducing the number of columns)

Principal components analysis (PCA)

Principal components analysis (PCA)

- PCA explores the covariance between variables, and combines variables into a smaller set of uncorrelated variables called principal components (PCs)
- PCs are weighted, linear combinations of the original variables
- Weights reveal how different variables are loaded into the PCs
- We want a small number of PCs to explain most of the information / variance in the data

First principal component:

$$
Z_{1}=\phi_{11} X_{1}+\phi_{21} X_{2}+\cdots+\phi_{p 1} X_{p}
$$

- $\phi_{j 1}$ are the weights indicating the contributions of each variable $j \in 1, \ldots, p$
- Weights are normalized $\sum_{j=1}^{p} \phi_{j 1}^{2}=1$
- $\phi_{1}=\left(\phi_{11}, \phi_{21}, \ldots, \phi_{p 1}\right)$ is the loading vector for PC1
- Z_{1} is a linear combination of the p variables that has the largest variance

Principal components analysis (PCA)

Second principal component:

$$
Z_{2}=\phi_{12} X_{1}+\phi_{22} X_{2}+\cdots+\phi_{p 2} X_{p}
$$

- $\phi_{j 2}$ are the weights indicating the contributions of each variable $j \in 1, \ldots, p$
- Weights are normalized $\sum_{j=1}^{p} \phi_{j 1}^{2}=1$
- $\phi_{2}=\left(\phi_{12}, \phi_{22}, \ldots, \phi_{p 2}\right)$ is the loading vector for PC2
- Z_{2} is a linear combination of the p variables that has the largest variance
- Subject to constraint it is uncorrelated with Z_{1}

We repeat this process to create p principal components

Visualizing PCA in two dimensions

Visualizing PCA in two dimensions

Searching for variance in orthogonal directions

PCA: singular value decomposition (SVD)

$$
X=U D V^{T}
$$

- Matrices U and V contain the left and right (respectively) singular vectors of scaled matrix X
- D is the diagonal matrix of the singular values
- SVD simplifies matrix-vector multiplication as rotate, scale, and rotate again
V is called the loading matrix for X with ϕ_{j} as columns,
- $Z=X V$ is the PC matrix

BONUS eigenvalue decomposition (aka spectral decomposition)

- V are the eigenvectors of $X^{T} X$ (covariance matrix, ${ }^{T}$ means transpose)
- U are the eigenvectors of $X X^{T}$
- The singular values (diagonal of D) are square roots of the eigenvalues of $X^{T} X$ or $X X^{T}$
- Meaning that $Z=U D$

Eigenvalues solve time travel?

Probably not... but they guide dimension reduction

We want to choose $p^{*}<p$ such that we are explaining variation in the data
Eigenvalues λ_{j} for $j \in 1, \ldots, p$ indicate the variance explained by each component

- $\sum_{j}^{p} \lambda_{j}=p$, meaning $\lambda_{j} \geq 1$ indicates $\mathrm{PC} j$ contains at least one variable's worth in variability
- λ_{j} / p equals proportion of variance explained by $\mathrm{PC} j$
- Arranged in descending order so that λ_{1} is largest eigenvalue and corresponds to PC1
- Can compute the cumulative proportion of variance explained (CVE) with p^{*} components:

$$
\mathrm{CVE}_{p^{*}}=\frac{\sum_{j}^{p *} \lambda_{j}}{p}
$$

Can use scree plot to plot eigenvalues and guide choice for $p^{*}<p$ by looking for "elbow" (rapid to slow change)

Example data: NFL teams summary

Created dataset using nflfastR summarizing NFL team performances from 1999 to 2021

```
library(tidyverse)
nfl_teams_data <- read_csv("https://shorturl.at/cfmpW")
nfl_model_data <- nfl_teams_data %>%
    mutate(score_diff = points_scored - points_allowed) %>%
    # Only use rows with air yards
    filter(season >= 2006) %>%
    dplyr::select(-wins, -losses, -ties, -points_scored, -points_allowed, -season, -team)
dim(nfl_model_data)
## [1] 512 49
```


NFL PCA example

Use the prcomp function (uses SVD) for PCA on centered and scaled data

```
model_x <- as.matrix(dplyr::select(nfl_model_data, -score_diff))
pca_nfl <- prcomp(model_x, center = TRUE, scale = TRUE) #<<x
summary(pca_nfl)
## Importance of components:
\#\# PC1 PC2 PC3 PC4 PC5 PC6 PC7
## Standard deviation 3.2060 3.1026 2.3257 2.04728 1.52301 1.40350 1.35714
## Proportion of Variance 0.2141 0.2006 0.1127 0.08732 0.04832 0.04104 0.03837
## Cumulative Proportion 0.2141 0.4147 0.5274 0.61468 0.66301 0.70405 0.74242
\begin{tabular}{lrrrrrrr} 
\#\# & PC8 & PC9 & PC10 & PC11 & PC12 & PC13 & PC14 \\
\#\# Standard deviation & 1.26250 & 1.14773 & 1.09881 & 1.01200 & 0.95689 & 0.93513 & 0.85233 \\
\#\# Proportion of Variance & 0.03321 & 0.02744 & 0.02515 & 0.02134 & 0.01908 & 0.01822 & 0.01513 \\
\#\# Cumulative Proportion & 0.77562 & 0.80307 & 0.82822 & 0.84956 & 0.86863 & 0.88685 & 0.90199 \\
\#\# & PC15 & PC16 & PC17 & PC18 & PC19 & PC20 & PC21 \\
\#\# Standard deviation & 0.82315 & 0.77434 & 0.65692 & 0.64016 & 0.60076 & 0.5796 & 0.56756 \\
\#\# Proportion of Variance & 0.01412 & 0.01249 & 0.00899 & 0.00854 & 0.00752 & 0.0070 & 0.00671 \\
\#\# Cumulative Proportion & 0.91610 & 0.92859 & 0.93758 & 0.94612 & 0.95364 & 0.9606 & 0.96735 \\
\#\# & PC22 & PC23 & PC24 & PC25 & PC26 & PC27 & PC28 \\
\#\# Standard deviation & 0.51349 & 0.47233 & 0.46768 & 0.41284 & 0.35810 & 0.33597 & 0.32018 \\
\#\# Proportion of Variance & 0.00549 & 0.00465 & 0.00456 & 0.00355 & 0.00267 & 0.00235 & 0.00214
\end{tabular}
```


Proportion of variance explained

prcomp\$sdev corresponds to the singular values, i.e., $\sqrt{\lambda_{j}}$, what is pca_nfl\$sdev^2 / ncol(model_x)?
Can use the broom package easily tidy prcomp summary for plotting
library (broom)

```
pca_nfl %>%
    tidy(matrix = "eigenvalues") %>%
    ggplot(aes(x = PC, y = percent)) +
    geom_line() + geom_point() +
    geom_hline(yintercept = 1 / ncol(model_x),
        color = "darkred",
            linetype = "dashed") +
    theme_bw()
```

- Add reference line at $1 / p$, why?

Display data in lower dimensions

prcomp $\$ x$ corresponds to the matrix of principal component scores, i.e., $Z=X V$

Can augment dataset with PC scores for plotting

- Add team and season for context

```
pca_nfl %>%
    augment(nfl_model_data) %>%
    bind_cols({
        nfl_teams_data %>%
            filter(season >= 2006) %>%
            dplyr::select(season, team)
    }) %>%
    unite("team_id", team:season, sep = "-",
            remove = FALSE) %>%
    ggplot(aes(x = .fittedPC1, y = .fittedPC2,
                            color = season)) +
    geom_text(aes(label = team_id), alpha = 0.9
    scale_color_gradient(low = "purple", high =
    theme_bw() + theme(legend.position = "botto
```


What are the loadings of these dimensions?

prcomp\$rotation corresponds to the loading matrix, i.e., V

```
arrow_style <- arrow(
    angle = 20, ends = "first", type = "closed"
    length = grid::unit(8, "pt")
)
library(ggrepel)
pca_nfl %>%
    tidy(matrix = "rotation") %>%
    pivot_wider(names_from = "PC", names_prefix
            values_from = "value") %>%
    mutate(stat_type = ifelse(str_detect(column
                                    "offense", "defen
    ggplot(aes(PC1, PC2)) +
    geom_segment(xend = 0, yend = 0, arrow = ar
    geom_text_repel(aes(label = column, color =
        size = 3) +
    scale_color_manual(values = c("darkred", "d
    theme_bw() +
    theme(legend.position = "bottom")
```


stat_type a defense a offense

PCA analysis with factoextra

Visualize the proportion of variance explained by each PC with factoextra
library (factoextra)
fviz_eig(pca_nfl)

Scree plot

PCA analysis with factoextra

Display observations with first two PC
fviz_pca_ind(pca_nfl)

PCA analysis with factoextra

Projection of variables - angles are interpreted as correlations, where negative correlated values point to opposite sides of graph

```
fviz_pca_var(pca_nfl)
```


PCA analysis with factoextra

Biplot displays both the space of observations and the space of variables

- Arrows represent the directions of the original variables
fviz_pca_biplot(pca_nfl)

