
Machine learningMachine learning
Random forests and gradient-boosted treesRandom forests and gradient-boosted trees

July 7th, 2023July 7th, 2023

1 / 211 / 21

Decision trees review
Decision trees partition training data into homogenous nodes / subgroups with similar response values

Pros

Decision trees are very easy to explain to non-statisticians.

Easy to visualize and thus easy to interpret without assuming a parametric form

Cons

High variance, i.e. split a dataset in half and grow tress in each half, the result will be very different

Related note - they generalize poorly resulting in higher test set error rates

But there are several ways we can overcome this via ensemble models

2 / 21

Bagging
Bootstrap aggregation (aka bagging) is a general approach for overcoming high variance

Bootstrap: sample the training data with replacement

Aggregation: Combine the results from many trees together, each constructed with a different
bootstrapped sample of the data

3 / 21

Bagging algorithm
Start with a specified number of trees :

For each tree in :

Construct a bootstrap sample from the training data

Grow a deep, unpruned, complicated (aka really overfit!) tree

To generate a prediction for a new point:

Regression: take the average across the trees

Classification: take the majority vote across the trees

assuming each tree predicts a single class (could use probabilities instead...)

Improves prediction accuracy via wisdom of the crowds - but at the expense of interpretability

Easy to read one tree, but how do you read ?

But we can still use the measures of variable importance and partial dependence to summarize our models

B

b 1, … , B

B

B

B = 500

4 / 21

Random forests algorithm
Random forests are an extension of bagging

For each tree in :

Construct a bootstrap sample from the training data

Grow a deep, unpruned, complicated (aka really overfit!) tree but with a twist

At each split: limit the variables considered to a random subset of original variables

Predictions are made the same way as bagging:

Regression: take the average across the trees

Classification: take the majority vote across the trees

Split-variable randomization adds more randomness to make each tree more independent of each other

Introduce as a tuning parameter: typically use (regression) or (classification)

 is bagging

b 1, … , B

mtry p

B

B

mtry p/3 √p

mtry = p

5 / 21

Example data: MLB 2022 batting statistics
Downloaded MLB 2022 batting statistics leaderboard from Fangraphs

library(tidyverse)

mlb_data <- read_csv("https://shorturl.at/iCP15") %>%

 janitor::clean_names() %>%

 mutate_at(vars(bb_percent:k_percent), parse_number)

model_mlb_data <- mlb_data %>%

 dplyr::select(-name, -team, -playerid)

head(model_mlb_data)

A tibble: 6 × 20

g pa hr r rbi sb bb_percent k_percent iso babip avg

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 85 374 22 62 55 2 6.7 17.6 0.28 0.353 0.327

2 88 385 33 72 69 8 11.4 26 0.337 0.296 0.281

3 88 370 18 41 59 1 8.9 13 0.233 0.295 0.293

4 82 349 15 56 51 7 10.6 18.6 0.213 0.346 0.306

5 90 391 20 64 70 5 12 21.2 0.26 0.388 0.33

6 87 375 19 54 75 13 10.7 9.9 0.288 0.275 0.288

ℹ 9 more variables: obp <dbl>, slg <dbl>, w_oba <dbl>, xw_oba <dbl>,
w_rc <dbl>, bs_r <dbl>, off <dbl>, def <dbl>, war <dbl>

6 / 21

https://www.fangraphs.com/leaders.aspx?pos=all&stats=bat&lg=all&qual=y&type=8&season=2022&month=0&season1=2022&ind=0

Example using ranger
ranger package is a popular / fast implementation (see randomForest for the original)

library(ranger)

init_mlb_rf <- ranger(war ~ ., data = model_mlb_data, num.trees = 50, importance = "impurity")

init_mlb_rf

Ranger result

Call:

ranger(war ~ ., data = model_mlb_data, num.trees = 50, importance = "impurity")

Type: Regression

Number of trees: 50

Sample size: 157

Number of independent variables: 19

Mtry: 4

Target node size: 5

Variable importance mode: impurity

Splitrule: variance

OOB prediction error (MSE): 0.2365584

R squared (OOB): 0.8433193
7 / 21

https://github.com/imbs-hl/ranger
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf

Out-of-bag estimate
Since the trees are constructed via bootstrapped data (samples with replacements) - each sample is likely to
have duplicate observations / rows

Out-of-bag (OOB) - original observations not contained in a single bootstrap sample

Can use the OOB samples to estimate predictive performance (OOB becomes better with larger datasets)

On average % of original data ends up in any particular bootstrap sample≈ 63

8 / 21

Variable importance

library(vip)

vip(init_mlb_rf, geom = "point") + theme_bw()

9 / 21

Important:

Marginal: tree complexity, splitting rule,
sampling scheme

library(caret)

rf_tune_grid <-

 expand.grid(mtry = seq(3, 18, by = 3),

 splitrule = "variance",

 min.node.size = 5)

set.seed(1917)

caret_mlb_rf <-

 train(war ~ ., data = model_mlb_data,

 method = "ranger", num.trees = 50,

 trControl = trainControl(

 method = "cv", number = 5),

 tuneGrid = rf_tune_grid)

ggplot(caret_mlb_rf) + theme_bw()

Tuning random forests
Unfortunately caret does not let you know tune number of trees - typically the error goes down with more
(Exercise: check out CV performance as a function of the number trees on your own, compare with OOB error)

mtry

10 / 21

Boosting
Build ensemble models sequentially

start with a weak learner, e.g. small decision tree with few splits

each model in the sequence slightly improves upon the predictions of the previous models by focusing on
the observations with the largest errors / residuals

11 / 21

Boosted trees algorithm

Write the prediction at step of the search as , start with

Fit the first decision tree to the data:

Fit the next tree to the residuals of the previous:

Add this to the prediction:

Fit the next tree to the residuals of the previous:

Add this to the prediction:

Continue until some stopping criteria to reach final model as a sum of trees:

t ŷ
(t)
i

ŷ
(0)
i

= 0

f1 ŷ
(1)
i

= f1(xi) = ŷ
(0)
i

+ f1(xi)

f2 yi − ŷ
(1)
i

ŷ
(2)
i = ŷ

(1)
i + f2(xi) = f1(xi) + f2(xi)

f3 yi − ŷ
(2)
i

ŷ
(3)
i = ŷ

(2)
i + f3(xi) = f1(xi) + f2(xi) + f3(xi)

ŷi = f(xi) =
B

∑
b=1

fb(xi)

12 / 21

Visual example of boosting in action

13 / 21

Gradient boosted trees
Regression boosting algorithm can be generalized to other loss functions via gradient descent - leading to
gradient boosted trees, aka gradient boosting machines (GBMs)

Update the model parameters in the direction of the loss function's descending gradient

14 / 21

Tune the learning rate in gradient descent
We need to control how much we update by in each step - the learning rate

15 / 21

Stochastic gradient descent can help with complex loss functions

Can take random samples of the data when updating - makes algorithm faster and adds randomness to get
closer to global minimum (no guarantees!)

16 / 21

eXtreme gradient boosting with XGBoost

17 / 21

https://xgboost.readthedocs.io/en/latest/R-package/xgboostPresentation.html

Tuning GBMs with xgboost
XGBoost (extreme gradient boosting) is a very powerful, efficient boosting library that is available to use
within R via the xgboost package

What we have to consider tuning (our hyperparameters):

number of trees (nrounds)

learning rate (eta), i.e. how much we update in each step

these two really have to be tuned together

complexity of the trees (depth, number of observations in nodes)

XGBoost also provides more regularization (via gamma) and early stopping

More work to tune properly as compared to random forests

But GBMs have more flexibility in their usage for particular objective functions

Insert with great power comes great responsibility meme

B

18 / 21

https://xgboost.readthedocs.io/en/latest/R-package/xgboostPresentation.html
https://xgboost.readthedocs.io/en/latest/R-package/xgboostPresentation.html

XGBoost example

library(xgboost)

xgboost_tune_grid <- expand.grid(nrounds = seq(from = 20, to = 200, by = 20),

 eta = c(0.025, 0.05, 0.1, 0.3), gamma = 0,

 max_depth = c(1, 2, 3, 4), colsample_bytree = 1,

 min_child_weight = 1, subsample = 1)

xgboost_tune_control <- trainControl(method = "cv", number = 5, verboseIter = FALSE)

set.seed(1937)

xgb_tune <- train(x = as.matrix(dplyr::select(model_mlb_data, -war)),

 y = model_mlb_data$war, trControl = xgboost_tune_control,

 tuneGrid = xgboost_tune_grid,

 objective = "reg:squarederror", method = "xgbTree",

 verbosity = 0)

xgb_tune$bestTune

nrounds max_depth eta gamma colsample_bytree min_child_weight subsample

130 200 1 0.3 0 1 1 1

19 / 21

XGBoost example

xgb_fit_final <- xgboost(data = as.matrix(dplyr::select(model_mlb_data, -war)),

 label = model_mlb_data$war, objective = "reg:squarederror",

 nrounds = xgb_tune$bestTune$nrounds,

 params = as.list(dplyr::select(xgb_tune$bestTune,

 -nrounds)),

 verbose = 0)

vip(xgb_fit_final) + theme_bw()

20 / 21

XGBoost example

library(pdp)

partial(xgb_fit_final, pred.var = "off", train = as.matrix(dplyr::select(model_mlb_data, -war)),

 plot.engine = "ggplot2", plot = TRUE,

 type = "regression") + theme_bw()

21 / 21

