
Machine learningMachine learning
Decision treesDecision trees

July 6th, 2023July 6th, 2023

1 / 211 / 21

What is Machine Learning?
The short version:

Machine learning (ML) is a subset of statistical learning that focuses on prediction

The longer version:

ML focuses on constructing data-driven algorithms that learn the mapping between predictor variables
and response variable(s).

We do not assume a parametric form for the mapping a priori, even if technically one can write one
down a posteriori (e.g., by translating a tree model to a indicator-variable mathematical expression)

e.g., linear regression is NOT considered a ML algorithm since we can write down the linear equation
ahead of time

e.g., random forests are considered an ML algorithm since we have what the trees will look like in
advance

2 / 21

Which algorithm is best?
That's not the right question to ask.

(And the answer is not deep learning. Because if the underlying relationship between your predictors and
your response is truly linear, you do not need to apply deep learning! Just do linear regression. Really. It's OK.)

The right question is ask is: why should I try different algorithms?

The answer to that is that without superhuman powers, you cannot visualize the distribution of predictor
variables in their native space.

Of course, you can visualize these data in projection, for instance when we perform EDA

And the performance of different algorithms will depend on how predictor data are distributed...

3 / 21

Data geometry

Two predictor variables with binary response variable: x's and o's

LHS: Linear boundaries that form rectangles will peform well in predicting response

RHS: Circular boundaries will perform better

4 / 21

Decision trees
Decision trees partition training data into homogenous nodes / subgroups with similar response values

The subgroups are found recursively using binary partitions

i.e. asking a series of yes-no questions about the predictor variables

We stop splitting the tree once a stopping criteria has been reached (e.g. maximum depth allowed)

For each subgroup / node predictions are made with:

Regression tree: the average of the response values in the node

Classification tree: the most popular class in the node

Most popular approach is Leo Breiman's Classification And Regression Tree (CART) algorithm

5 / 21

Decision tree structure

6 / 21

Decision tree structure
We make a prediction for an observation by following its path along the tree

Decision trees are very easy to explain to non-statisticians.

Easy to visualize and thus easy to interpret without assuming a parametric form

7 / 21

Recursive splits: each split / rule depends on previous split / rule above it

Objective at each split: find the best variable to partition the data into one of two regions, & , to
minimize the error between the actual response, , and the node's predicted constant,

For regression we minimize the sum of squared errors (SSE):

For classification trees we minimize the node's impurity the Gini index

where is the proportion of observations in the node belonging to class out of total classes

want to minimize : small values indicate a node has primarily one class (is more pure)

Splits yield locally optimal results, so we are NOT guaranteed to train a model that is globally optimal

How do we control the complexity of the tree?

R1 R2
yi ci

SSE = ∑
i∈R1

(yi − c1)2 +∑
i∈R2

(yi − c2)2

pk k K

Gini

Gini = 1 −
K

∑
k

p2
k

8 / 21

Tune the maximum tree depth or minimum node size

9 / 21

Prune the tree by tuning cost complexity
Can grow a very large complicated tree, and then prune back to an optimal subtree using a cost complexity
parameter (like for elastic net)

 penalizes objective as a function of the number of terminal nodes

e.g., we want to minimize

α λ

α

SSE + α ⋅ (# of terminal nodes)

10 / 21

Example data: MLB 2022 batting statistics
Downloaded MLB 2022 batting statistics leaderboard from Fangraphs

library(tidyverse)

mlb_data <- read_csv("https://shorturl.at/iCP15") %>%

 janitor::clean_names() %>%

 mutate_at(vars(bb_percent:k_percent), parse_number)

head(mlb_data)

A tibble: 6 × 23

name team g pa hr r rbi sb bb_percent k_percent iso

<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Rafael D… BOS 85 374 22 62 55 2 6.7 17.6 0.28

2 Aaron Ju… NYY 88 385 33 72 69 8 11.4 26 0.337

3 Nolan Ar… STL 88 370 18 41 59 1 8.9 13 0.233

4 Manny Ma… SDP 82 349 15 56 51 7 10.6 18.6 0.213

5 Paul Gol… STL 90 391 20 64 70 5 12 21.2 0.26

6 Jose Ram… CLE 87 375 19 54 75 13 10.7 9.9 0.288

ℹ 12 more variables: babip <dbl>, avg <dbl>, obp <dbl>, slg <dbl>,
w_oba <dbl>, xw_oba <dbl>, w_rc <dbl>, bs_r <dbl>, off <dbl>, def <dbl>,

war <dbl>, playerid <dbl>

11 / 21

https://www.fangraphs.com/leaders.aspx?pos=all&stats=bat&lg=all&qual=y&type=8&season=2022&month=0&season1=2022&ind=0

Regression tree example with the rpart package

library(rpart)

init_mlb_tree <- rpart(formula = w_oba ~ bb_percent + k_percent + iso,

 data = mlb_data, method = "anova")

init_mlb_tree

n= 157

node), split, n, deviance, yval

* denotes terminal node

1) root 157 0.215948200 0.3291338

2) iso< 0.2055 123 0.113126200 0.3175691

4) iso< 0.1035 16 0.016633000 0.2837500 *

5) iso>=0.1035 107 0.075457050 0.3226262

10) bb_percent< 8.75 65 0.039689380 0.3146154

20) k_percent>=27.15 9 0.001585556 0.2902222 *

21) k_percent< 27.15 56 0.031887930 0.3185357

42) iso< 0.152 27 0.010937850 0.3089259 *

43) iso>=0.152 29 0.016135240 0.3274828

86) k_percent>=21.85 17 0.008568235 0.3194706 *

87) k_percent< 21.85 12 0.004929667 0.3388333 *

11) bb_percent>=8.75 42 0.025140980 0.3350238

22) k t> 23 45 11 0 002378909 0 3129091 *

12 / 21

https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf

library(rpart.plot)

rpart.plot(init_mlb_tree)

rpart() runs 10-fold CV to tune for pruning

Selects # terminal nodes via 1 SE rule

plotcp(init_mlb_tree)

Display the tree with rpart.plot

α

13 / 21

plhttp://www.milbo.org/rpart-plot/

full_mlb_tree <- rpart(formula = w_oba ~

 bb_percent + k_percent + iso,

 data = mlb_data, method = "anova"

 control = list(cp = 0, xval = 10)

rpart.plot(full_mlb_tree)

plotcp(full_mlb_tree)

What about the full tree? (check out rpart.control)

14 / 21

Train with caret

library(caret)

caret_mlb_tree <- train(w_oba ~ bb_percent + k_percent + iso + avg + obp + slg + war,

 data = mlb_data, method = "rpart",

 trControl = trainControl(method = "cv", number = 10),

 tuneLength = 20)

ggplot(caret_mlb_tree) + theme_bw()

15 / 21

Display the final model

rpart.plot(caret_mlb_tree$finalModel)

16 / 21

Variable importance - based on reduction in SSE
(notice anything odd?)

library(vip)

vip(caret_mlb_tree, geom = "point") +

 theme_bw()

Summarize single variable's relationship with
partial dependence plot

library(pdp)

partial(caret_mlb_tree, pred.var = "obp") %>%

 autoplot() + theme_bw()

Summarizing variables in tree-based models

17 / 21

Classification: predicting MLB HRs
Used the baseballr package to scrape all batted-balls from 2022 season:

library(tidyverse)

batted_ball_data <- read_csv("https://shorturl.at/moty2") %>%

 mutate(is_hr = as.numeric(events == "home_run")) %>%

 filter(!is.na(launch_angle), !is.na(launch_speed),

 !is.na(is_hr))

table(batted_ball_data$is_hr)

0 1

6702 333

18 / 21

http://billpetti.github.io/baseballr/

batted_ball_data %>%

 ggplot(aes(x = launch_speed,

 y = launch_angle,

 color = as.factor(is_hr))) +

 geom_point(alpha = 0.5) +

 ggthemes::scale_color_colorblind(

 labels = c("No", "Yes")) +

 labs(x = "Exit velocity",

 y = "Launch angle",

 color = "HR?") +

 theme_bw() +

 theme(legend.position = "bottom")

HRs are relatively rare and confined to one
area of this plot

Predict HRs with launch angle and exit velocity?

19 / 21

Train with caret

library(caret)

caret_hr_tree <- train(as.factor(is_hr) ~ launch_speed + launch_angle,

 data = batted_ball_data, method = "rpart",

 trControl = trainControl(method = "cv", number = 10),

 tuneLength = 20)

ggplot(caret_hr_tree) + theme_bw()

20 / 21

Display the final model

rpart.plot(caret_hr_tree$finalModel)

21 / 21

