
Supervised LearningSupervised Learning
K-Nearest Neighbors Regression and ClassificationK-Nearest Neighbors Regression and Classification

June 30th, 2023June 30th, 2023

1 / 211 / 21

Supervised learning so far...
Linear Regression: Assumptions

The relationship is linear

Error terms must be independently, identically distributed from Normal distribution (actually three
assumptions!)

Normality

Independence

Homoscedasticity

Each of these assumptions must be checked

Assumptions (in general) make estimation and inference easier but may not always be appropriate

Yi = β0 + β1Xi + ϵi, for i = 1, 2, … ,n

ϵi
iid
∼ N(0,σ2) with constant variance σ2

2 / 21

Parametric models
When we make assumptions about distributions, we are saying that we can summarize them with a set of
parameters

Examples...

Normal distribution: , the mean and variance are parameters

Poisson distribution: , the only parameter is , which is both the mean and variance

Simple linear regression: , the coefficients (intercept and slope) are parameters

But what if we don't want to make assumptions a priori about our data?

N(μ,σ2) μ σ2

Pois(λ) λ

Y = β0 + β1X β0 β1

3 / 21

Benefits

Very flexible, allowing for fitting to very
complex relationships

Often show better performance, more accurate
predictions

Limitations

Frequently less interpretable

Prone to overfitting

Computational concerns (require more data,
take longer to train)

Nonparametric models
Still assume a function mapping the predictors to the response

And we still want to estimate this regression or classification function

But now we do not assume that this function takes any particular form (e.g. do not assume that the
relationship is linear)

Y = f(X)

4 / 21

Regression vs. classification
Regression models: estimate average value of response

Classification models: determine the most likely class of a set of discrete response variable classes

Linear (simple or multiple) models regression

Logistic models classification!

Examples of classification:

Binary: given covariates like running yards and completion percentage, can we predict whether or not a
QB is likely to be a Hall-of-Famer?

Multi-class: from predictors like tumor size, location, and cell types, can we determine which kind of
cancer a patient has?

Question of interest determines which type of model to use

Many nonparametric methods (e.g. KNN) can be used either for classification OR regression, just change the
final outcome

→

→

5 / 21

How might we model ?

"Decision boundary"

Example settings:

QB's running and passing yards , HOF
status

Patient's length of inpatient rehab stay and
report of outpatient stress , substance
abuse relapse

Setup: Binary classification problem

Y = f(X1,X2)

Y ∈ {0, 1}

f(X1,X2)

(X1,X2)
(Y)

(X1,X2)
(Y)

6 / 21

Classify a new point based on a majority vote of
the k points closest to it in space

Close? Use Euclidean distance

Have to choose how many neighbors to query:
which value of k to pick

K-Nearest Neighbors Classification

d(xi,xj) = √(xi1 − xj1)2 + ⋯ + (xip − xjp)2

7 / 21

Different values of k lead to different decision boundaries

Excellent illustration of the bias-variance tradeoff

As k increases, the variance decreases (different training samples will produce more similar decision
boundaries), but the bias increases (the decision boundary gets further from the truth)

8 / 21

Picking the number of neighbors
The number of neighbors k is a hyperparameter

Tune this value using a train-test split or using cross-validation

Note: 1NN classification will have zero training error... why ?

Ideally: balance the flexibility, allowing for a complex decision boundary, but don't fit to the noise

9 / 21

Data: NFL field goal attempts
Created dataset using nflscrapR-data of all NFL field goal attempts from 2009 to 2019

nfl_fg_attempts <- read_csv("https://shorturl.at/mCGN2") %>%

 filter(pbp_season == 2014) %>%

 mutate(is_fg_made = as_factor(is_fg_made))

head(nfl_fg_attempts)

A tibble: 6 × 11

kicker_player_id kicker_player_name qtr score_differential home_team posteam

<chr> <chr> <dbl> <dbl> <chr> <chr>

1 00-0025944 S.Hauschka 1 0 SEA SEA

2 00-0025580 M.Crosby 2 -3 SEA GB

3 00-0025944 S.Hauschka 3 7 SEA SEA

4 00-0019536 S.Graham 1 0 ATL NO

5 00-0019536 S.Graham 1 3 ATL NO

6 00-0020578 M.Bryant 2 -13 ATL ATL

ℹ 5 more variables: posteam_type <chr>, kick_distance <dbl>,
pbp_season <dbl>, abs_score_diff <dbl>, is_fg_made <fct>

Response: is the field goal made?

10 / 21

https://github.com/ryurko/nflscrapR-data

Explanatory variables:

Kick distance and score differential

ggplot(nfl_fg_attempts) +

 geom_point(aes(x = kick_distance,

 y = score_differential,

 color = is_fg_made),

 size = 0.7) +

 theme_bw()

Does there appear to be a relationship between
these predictors and the success of field goal
attempts?

Predicting field goals

11 / 21

KNN classification
Using the FNN package (fast implementation of KNN models)

Separate predictors from the response column:

fg_x <- dplyr::select(nfl_fg_attempts, kick_distance, score_differential)

fg_y <- nfl_fg_attempts$is_fg_made

Give knn()

a training set with all explanatory columns train

a "test" set including all explanatory columns test

if you provide the same set for both, it will give predictions on the training set

a vector of true classifications for the training set cl

a value for number of nearest neighbors k

instructions for which algorithm to use ("brute" means that it will do a brute-force search, but it can also
do tree-based searches)

12 / 21

https://rdrr.io/cran/FNN/

Fitting a KNN classifier
Trying :

library(FNN)

init_knn <- knn(train = fg_x, test = fg_x, cl = fg_y, k = 1, algorithm = "brute")

This outputs a vector of predicted classes for the "test" set (in this case, predictions on the training set)

How well does this model perform?

mean(nfl_fg_attempts$is_fg_made == init_knn)

[1] 0.9177665

92% But we said that 1NN would achieve zero training error?

In this dataset, there are multiple observations for some distance-differential combinations, which might have
both made and missed field goals, so it then takes the majority vote among those "equivalent" points (see the
documentation!)

k = 1

13 / 21

Training vs. test
But, as we know, we should not assess models based on training error, we need some measure of holdout
performance:

Split the data, train the model, then assess performance on the test set

(Yet another way to manually code a train-test split)

set.seed(50)

train_ids <- sample(1:nrow(nfl_fg_attempts),

 ceiling(0.75 * nrow(nfl_fg_attempts)))

train_nfl <- nfl_fg_attempts[train_ids,]

test_nfl <- nfl_fg_attempts[-train_ids,]

separate predictors and response, again

train_x <- dplyr::select(train_nfl, kick_distance, score_differential)

train_y <- train_nfl$is_fg_made

test_x <- dplyr::select(test_nfl, kick_distance, score_differential)

test_y <- test_nfl$is_fg_made

14 / 21

Assessing 1NN
1 Nearest Neighbor classifier: How well does it perform on the training data?

one_nn_train_preds <- knn(train = train_x, test = train_x, cl = train_y, k = 1, algorithm = "brut

mean(train_y == one_nn_train_preds)

[1] 0.9418133

... But what about on the test data?

one_nn_test_preds <- knn(train = train_x, test = test_x, cl = train_y, k = 1, algorithm = "brute"

mean(test_y == one_nn_test_preds)

[1] 0.7479675

Performance decreases! We're overfitting!

15 / 21

Which value of k to pick?
As a demonstration, let's loop through possible values of k and see which ends up having the best holdout
performance

errs_train <- rep(0, 12)

errs_test <- rep(0, 12)

k_vals <- 1:12

for(k in k_vals) {

 train_preds <- knn(train = train_x, test = train_x, cl = train_y, k = k, algorithm = "brute")

 errs_train[k] <- mean(!train_y == train_preds)

 test_preds <- knn(train = train_x, test = test_x, cl = train_y, k = k, algorithm = "brute")

 errs_test[k] <- mean(!test_y == test_preds)

}

Side note: beyond k = 12, the model predicts success for the entire test set

16 / 21

errors <- bind_cols(train_err = errs_train,

 test_err = errs_test,

 k = k_vals)

errors %>%

 pivot_longer(c(train_err, test_err),

 names_to = "err_type") %>%

 ggplot(aes(x = k, y = value,

 color = err_type)) +

 geom_point() +

 geom_line() +

 labs(y = "Misclassification Rate",

 color = "Type of error") +

 theme_bw()

Plot training and test error

17 / 21

But wait, there's more!
The k-nearest-neighbors algorithm can also be used for regression!

As before:

Find the k points closest to your new observation (based on Euclidean distance)

But now,

Rather than taking a majority vote to determine a class, take the average response among the neighbors

Predict this average value as the response for the new point:

(Side Note: You can also do cool stuff like weighting those responses based on how close they are to the new
point! Lots of modifications to knn regression out there)

f̂ (x∗) = Ave(yi|xi ∈ Nk(x∗))

18 / 21

Gapminder data again

library(dslabs)

clean_gapminder <- as_tibble(gapminder) %>%

 filter(year == 2011, !is.na(gdp)) %>%

 mutate(log_gdp = log(gdp))

gdp_plot <- clean_gapminder %>%

 ggplot(aes(x = log_gdp,

 y = life_expectancy)) +

 geom_point(alpha = 0.5) +

 geom_smooth(method = "lm") +

 theme_bw() +

 labs(x = "log(GDP)",

 y = "Life expectancy")

gdp_plot

Brief KNN Regression Example

19 / 21

k2_le <- knn.reg(

 train = clean_gapminder$log_gdp,

 y = clean_gapminder$life_expectancy,

 k = 2)

k5_le <- knn.reg(

 train = clean_gapminder$log_gdp,

 y = clean_gapminder$life_expectancy,

 k = 5)

k15_le <- knn.reg(

 train = clean_gapminder$log_gdp,

 y = clean_gapminder$life_expectancy,

 k = 15)

gdp_plot +

 geom_line(aes(x = log_gdp, y = k2_le$pred),

 color = "darkgreen") +

 geom_line(aes(x = log_gdp, y = k5_le$pred),

 color = "darkred") +

 geom_line(aes(x = log_gdp, y = k15_le$pred)

 color = "purple")

KNN Regression for Life Expectancy

20 / 21

KNN with tidymodels
Of course, we can also use the tidymodels framework to fit and use a KNN regression model:

library(tidymodels)

knn_reg_mod <- nearest_neighbor(

 mode = "regression",

 engine = "kknn",

 neighbors = 5, # we could also tune this with cross-validation

 weight_func = NULL, # for weighted KNN!

 dist_power = NULL # for use with a different distance metric

)

gapminder_knn_fit <- knn_reg_mod %>%

 fit(

 life_expectancy ~ log_gdp,

 data = clean_gapminder

)

21 / 21

