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Left: Linear regression

not limited to be within [0, 1]!

Right: Logistic regression

respects the observed range of outcomes!

The setting: Figure 4.2 (ISLR)

2 / 19

http://faculty.marshall.usc.edu/gareth-james/ISL/


Generalized linear models (GLMs) review
Linear regression: estimate mean value of response variable , given predictor variables :

In a GLM, we include a link function  that transforms the linear model:

Use  to reduce the range of possible values for  from  to, e.g.,  or , etc.

In a GLM you specify a probability distribution family that governs the observed response values

e.g. if  are zero and the positive integers, the family could be Poisson

e.g. if  are just 0 and 1, the family is Bernoulli and extends to Binomial for  independent trials

Y x1, … ,xp

E[Y |x] = β0 + β1x1 + ⋯ + βpxp

g

g(E[Y |x]) = β0 + β1x1 + ⋯ + βpxp

g E[Y |x] (−∞, ∞) [0, 1] [0, ∞)

Y

Y n
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https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Binomial_distribution


Logistic regression
Assuming that we are dealing with two classes, the possible observed values for  are 0 and 1,

To limit the regression betweewn : use the logit function, aka the log-odds ratio

meaning

Y

Y |x ∼ Bernoulli(p = E[Y |x]) = Binomial(n = 1, p = E[Y |x])

[0, 1]

logit(p(x)) = log[ ] = log[ ] = β0 + β1x1 + ⋯ + βpxp
p(x)

1 − p(x)

E[Y |x]

1 − E[Y |x]

p(x) = E[Y |x] =
eβ0+β1x1+⋯+βpxp

1 + eβ0+β1x1+⋯+βpxp
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Major di�erence between linear and logistic regression
Logistic regression involves numerical optimization

 is observed response for  observations - either 0 or 1

we need to use an iterative algorithm to find 's that maximize the likelihood

Newton's method: start with initial guess, calculate gradient of log-likelihood, add amount proportional
to the gradient to parameters, moving up log-likelihood surface

means logistic regression runs more slowly than linear regression

if you're interested: you use iteratively re-weighted least squares, Section 12.3.1

yi n

β

n

∏
i=1

p(xi)
yi(1 − p (xi))1−yi
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http://www.stat.cmu.edu/~cshalizi/uADA/15/lectures/12.pdf


Inference with logistic regression
Major motivation for logistic regression (and all GLMs) is inference

how does the response change when we change a predictor by one unit?

For linear regression, the answer is straightforward

For logistic regression... it is a little less straightforward,

the predicted response varies non-linearly with the predictor variable values

one convention is to fall back upon the concept of odds

E[Y |x] = β0 + β1x1

E[Y |x] =
eβ0+β1x1+⋯+βpxp

1 + eβ0+β1x1+⋯+βpxp
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The odds interpretation
Pretend the predicted probability is 0.8 given a particular predictor variable value

just pretend we only have one predictor variable

This means that if we were to repeatedly sample response values given that predictor variable value: we
expect class 1 to appear 4 times as often as class 0

Thus we say that for the given predictor variable value, the  are 4 (or 4-1) in favor of class 1

How does the odds change if I change the value of a predictor variable by one unit?

For every unit change in , the odds change by a factor 

Odds = = = 4 = eβ0+β1x
E[Y |x]

1 − E[Y |x]

0.8

1 − 0.8

Odds

Oddsnew = eβ0+β1(x+1) = eβ0+β1xeβ1 = eβ1Oddsold

x eβ1
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Example data: NFL �eld goal attempts
Created dataset using nflscrapR-data of all NFL field goal attempts from 2009 to 2019

nfl_fg_attempts <- read_csv("https://shorturl.at/mCGN2")

nfl_fg_attempts

## # A tibble: 10,811 × 11

##    kicker_player_id kicker_player_name   qtr score_differential home_team

##    <chr>            <chr>              <dbl>              <dbl> <chr>    

##  1 00-0020962       R.Bironas              1                  0 PIT      

##  2 00-0020962       R.Bironas              2                  0 PIT      

##  3 00-0020962       R.Bironas              4                  0 PIT      

##  4 00-0020737       J.Reed                 4                 -3 PIT      

##  5 00-0020737       J.Reed                 5                  0 PIT      

##  6 00-0004091       P.Dawson               1                  0 CLE      

##  7 00-0010072       R.Longwell             1                 -3 CLE      

##  8 00-0004091       P.Dawson               2                 -7 CLE      

##  9 00-0010072       R.Longwell             4                 12 CLE      

## 10 00-0006800       J.Hanson               1                -14 NO       

## # ℹ 10,801 more rows
## # ℹ 6 more variables: posteam <chr>, posteam_type <chr>, kick_distance <dbl>,
## #   pbp_season <dbl>, abs_score_diff <dbl>, is_fg_made <dbl>
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https://github.com/ryurko/nflscrapR-data


We use the glm function (similar to lm)

Specify the family is binomial

init_logit <- glm(is_fg_made ~ kick_distance,

                  data = nfl_fg_attempts,

                  family = "binomial")

View predicted probability relationship

nfl_fg_attempts %>%

  mutate(pred_prob = init_logit$fitted.values

  ggplot(aes(x = kick_distance)) +

  geom_line(aes(y = pred_prob), 

            color = "blue") +

  geom_point(aes(y = is_fg_made), 

             alpha = 0.3,

             color = "darkorange") +

  scale_x_reverse() +

  theme_bw()

Fitting a logistic regression model
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summary(init_logit)

## 

## Call:

## glm(formula = is_fg_made ~ kick_distance, family = "binomial", 

##     data = nfl_fg_attempts)

## 

## Coefficients:

##                Estimate Std. Error z value Pr(>|z|)    

## (Intercept)    5.916656   0.145371   40.70   <2e-16 ***

## kick_distance -0.104365   0.003255  -32.06   <2e-16 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## (Dispersion parameter for binomial family taken to be 1)

## 

##     Null deviance: 9593.1  on 10810  degrees of freedom

## Residual deviance: 8277.5  on 10809  degrees of freedom

## AIC: 8281.5

## 

## Number of Fisher Scoring iterations: 5
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What is Deviance?
For model of interest  the total deviance is:

 is the likelihood for model 

 is the likelihood for the saturated model, with  parameters! (i.e., a perfect fit)

Can think of  as some constant that does not change

Deviance is a measure of goodness of fit: the smaller the deviance, the better the fit

Generalization of RSS in linear regression to any distribution family

M

DM = −2 log = 2 (logLS − logLM)
LM

LS

LM M

LS n

LS
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https://en.wikipedia.org/wiki/Deviance_(statistics


Logistic regression output
Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-2.7752   0.2420   0.4025   0.6252   1.5136

The deviance residuals are contributions to total deviance (signed square roots of unit deviances)

where  is the  observed response and  is the estimated probability of success

Coefficients:

               Estimate Std. Error z value Pr(>|z|)    

(Intercept)    5.916656   0.145371   40.70   <2e-16 ***

kick_distance -0.104365   0.003255  -32.06   <2e-16 ***

The intercept of the prediction curve is .

di = sign(yi − p̂ i)√−2[yi log p̂ i + (1 − yi) log(1 − p̂ i)]

yi ith p̂ i

e5.916656

12 / 19



Logistic regression output
    Null deviance: 9593.1  on 10810  degrees of freedom

Residual deviance: 8277.5  on 10809  degrees of freedom

AIC: 8281.5

logLik(init_logit)   # the maximum log-likelihood value

## 'log Lik.' -4138.732 (df=2)

Residual deviance is -2 times -4138.732, or 8277.5 (What about the saturated model?)

Null deviance corresponds to intercept-only model

AIC is  =  = 8281.5

where  is the number of degrees of freedom (here, df = 2)

These are all metrics of quality of fit of the model

We will consider these to be less important than test-set performances

2k − 2 logL 2 ⋅ k − 2 ⋅ (−4138.732)

k
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https://en.wikipedia.org/wiki/Akaike_information_criterion


Logistic regression predictions
To generate logistic regression predictions there are few things to keep in mind...

the fitted.values are on the probability scale: all are between 0 and 1

but the default for predict(init_logit) is the log-odds scale!

we change this with the type argument: predict(init_logit, type = "response")

How do we predict the class? e.g make or miss field goal?

pred_fg_outcome <- ifelse(init_logit$fitted.values > 0.5,

"make", "miss")

typically if predicted probability is > 0.5 then we predict success, else failure
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Model assessment

Most straight-forward way is the confusion matrix (rows are predictions, and columns are observed):

table("Predictions" = pred_fg_outcome, "Observed" = nfl_fg_attempts$is_fg_made)

##            Observed

## Predictions    0    1

##        make 1662 8994

##        miss   94   61

In-sample misclassification rate:

mean(ifelse(fitted(init_logit) < 0.5, 0, 1) != nfl_fg_attempts$is_fg_made)

## [1] 0.1593747

Brier score:

mean((nfl_fg_attempts$is_fg_made - fitted(init_logit))^2)

## [1] 0.1197629
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https://en.wikipedia.org/wiki/Brier_score


nfl_fg_attempts %>%

  mutate(pred_prob = init_logit$fitted.values

         bin_pred_prob = round(pred_prob / 0.

# Group by bin_pred_prob:

  group_by(bin_pred_prob) %>%

# Calculate the calibration results:

  summarize(n_attempts = n(),

            bin_actual_prob = mean(is_fg_made

  ggplot(aes(x = bin_pred_prob, y = bin_actua

  geom_point(aes(size = n_attempts)) +

  geom_smooth(method = "loess", se = FALSE) +

  geom_abline(slope = 1, intercept = 0, 

              color = "black", linetype = "da

  coord_equal() + 

  scale_x_continuous(limits = c(0,1)) + 

  scale_y_continuous(limits = c(0,1)) + 

  labs(size = "Number of attempts",

       x = "Estimated make probability",

       y = "Observed make probability") + 

  theme_bw() +

  theme(legend.position = "bottom")

If model says the probability of rain for a group of
days is 50%, it better rain on half those days... or
something is incorrect about the probability!

Well-calibrated if actual probabilities match predicted probabilities
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BONUS: Leave-one-season-out cross validation (with purrr)

In many datasets rather than random holdout folds, you might have particular holdouts of interest (e.g.
seasons, games, etc.)

nfl_fg_loso_cv_preds <- # generate holdout predictions for every row based season

  map_dfr(unique(nfl_fg_attempts$pbp_season), 

function(season) {

# Separate test and training data:

            test_data <- nfl_fg_attempts %>%

              filter(pbp_season == season)

            train_data <- nfl_fg_attempts %>%

              filter(pbp_season != season)

# Train model:

            fg_model <- glm(is_fg_made ~ kick_distance, data = train_data,

                            family = "binomial")

# Return tibble of holdout results:

            tibble(test_pred_probs = predict(fg_model, newdata = test_data,

                                             type = "response"),

                   test_actual = test_data$is_fg_made,

                   test_season = season) 

          })
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https://purrr.tidyverse.org/


Overall holdout performance
Misclassification rate:

nfl_fg_loso_cv_preds %>%

  mutate(test_pred = ifelse(test_pred_probs < .5, 0, 1)) %>%

  summarize(mcr = mean(test_pred != test_actual))

## # A tibble: 1 × 1

##     mcr

##   <dbl>

## 1 0.160

Brier score:

nfl_fg_loso_cv_preds %>%

  summarize(brier_score = mean((test_actual - test_pred_probs)^2))

## # A tibble: 1 × 1

##   brier_score

##         <dbl>

## 1       0.120
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Holdout performance by season

nfl_fg_loso_cv_preds %>%

  mutate(test_pred = ifelse(test_pred_probs < .5, 0, 1)) %>%

  group_by(test_season) %>%

  summarize(mcr = mean(test_pred != test_actual)) %>%

  ggplot(aes(x = test_season, y = mcr)) +

  geom_bar(stat = "identity", width = .1) + geom_point(size = 5) +

  theme_bw() +

  scale_x_continuous(breaks = unique(nfl_fg_loso_cv_preds$test_season))
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