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Probability distributions
A distribution is a mathematical function  where

 may take on continuous or discrete values over the domain (i.e. all possible inputs) of 

 is a set of parameters governing the shape of the distribution

e.g.  for a Normal / Gaussian distribution)

the  symbol means that the shape of the distribution is conditional on the values of 

 for all 

 or .

We use  to denote the distribution for its:

probability density function (PDF) if  is continuous

probability mass function (PMF) if  is discrete
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https://en.wikipedia.org/wiki/Normal_distribution


Normal distribution PDF (dnorm):

we write 

standard Normal: 

can plot density curves with stat_function()

tibble(x = c(-5, 5)) %>%

  ggplot(aes(x)) +

  stat_function(fun = dnorm, n = 101,

                args = list(mean = 0, sd = 1)

  stat_function(fun = dnorm, color = "red",

                args = list(mean = -2, 

                            sd = sqrt(0.5))) 

  theme_bw()

Probability distribution examples: Normal distribution
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N(0, 1)
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https://en.wikipedia.org/wiki/Normal_distribution


Binomial distribution PMF (dbinom):

model for the probability of  successes in 
independent trials (size), each with success
probability of  (prob)

we write 

R uses d for both PDFs and PMFs

tibble(x = 0:20) %>%

  mutate(binom1 = dbinom(x, size = 20,

                         prob = 0.5),

         binom2 = dbinom(x, size = 20,

                         prob = 0.1)) %>%

  ggplot(aes(x)) + geom_point(aes(y = binom1)

  geom_point(aes(y = binom2), color = "red") 

  theme_bw()

Probability distribution examples: binomial distribution

f(x|n, p) = ( )px(1 − p)n−xn

x

x n

p

X ∼ Binomial(n, p)
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https://en.wikipedia.org/wiki/Binomial_distribution


Distributions and regression
Why does this matter?

Because linear regression, and generalized variants, make assumptions about how observed data are
distributed around the true regression line, conditional on a value of 

For simple linear regression, our goal is to estimate , assuming that for every value of ...

the distribution governing the possible values of  is a Normal distribution

Note: capitalize  because values are random variables (random samples from distribution)

the mean of the Normal distribution is 

the variance of the Normal distribution is , which is a constant (i.e., does not vary with )

, same as before: , where 

However, just because these assumptions are made in simple linear regression doesn't mean that all linear
regression-related models utilize the same assumptions. They don't. When we step back from these
assumptions, we enter the realm of generalized linear models (GLMs).
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E[Y |x] x
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E[Y |x] = μ(y|x) = β0 + β1x

σ2 x

⇒ Y |x ∼ N(β0 + β1x, σ2) Y = β0 + β1x + ϵ ϵ ∼ N(0, σ2)
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Maximum likelihood estimation
In generalized regression, we

1. assume a (family of) distribution(s) that govern observed response values , and

2. estimate the parameters  of that distribution.

Estimation is done by maximizing the likelihood function:

to find the maximum likelihood estimators (MLEs) (typically maximize , the log-likelihood)

Leaving many details under the rug:

the maximum is the point at which the derivative of the likelihood function is zero

you don't need to check the second derivative: wherever the derivative equals zero, it's a maximum value,
not a minimum value
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MLE for regression
Determining the value of  that achieves the maximum likelihood can be difficult

It may require numerical optimization

wherein the computer, using an algorithm, searches over possible values of  to find the optimal one

For linear regression,  can be maximized analytically:

the  estimates that minimize the residual sum of squares (RSS) are the MLEs!

Unbiased estimate for  is 

This enables us to perform statistical inference:

Hypothesis testing for coefficients from before

Confidence intervals and prediction intervals

θ
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library(tidyverse)

library(dslabs)

clean_gapminder <- as_tibble(gapminder) %>%

  filter(year == 2011, !is.na(gdp)) %>%

  mutate(log_gdp = log(gdp))

init_lm <- lm(life_expectancy ~ log_gdp,

              data = clean_gapminder)

geom_smooth() displays confidence intervals
for the regression line

lm_plot <- clean_gapminder %>%

  ggplot(aes(x = log_gdp,

             y = life_expectancy)) +

  geom_point(alpha = 0.5) +

  geom_smooth(method = "lm") +

  theme_bw() +

  labs(x = "log(GDP)", y = "Life expectancy")

lm_plot

Gapminder data
Health and income outcomes for 184 countries from 1960 to 2016 from the famous Gapminder project
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https://www.gapminder.org/data


Con�dence intervals versus prediction intervals
Regression confidence intervals are based on standard errors for the estimated regression line at :

Regression prediction intervals add the variance of a single predicted value :

 std error for the predicted AVERAGE 

 std error for the prediction of an observation 

Why does the standard error for a prediction never go to 0 as  goes to ?
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pred_int_data <- 

  predict(init_lm, data = clean_gapminder, 

          interval = "prediction",

          level = .95) %>%

  as_tibble()  

lm_plot +

  geom_ribbon(data =

                bind_cols(clean_gapminder,

                          pred_int_data),

              aes(ymin = lwr, ymax = upr),

              color = "red", fill = NA)

Subtle point: both are confidence intervals...

Con�dence intervals versus prediction intervals

Generate 95% intervals with Ŷ
∗

+ / − 2 ⋅ SEtype(x∗)
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Generalization example
In typical linear regression, the distribution is Normal and the domain of  is .

What, however, happens if we know that

1. the domain of observed values of the response is actually ? and

2. the observed values are discrete, with possible values 0, 1, 2, ...

The Normal distribution doesn't hold here

Any idea of what distribution could possibly govern ?

Remember, we might not know truly how  is distributed, but any assumption we make has to fit with
the limitations imposed by points 1 and 2 above

Y |x (−∞, ∞)

[0, ∞]

Y |x

Y |x
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Generalization: Poisson regression
A distribution that fulfills the conditions imposed on the last slide is the Poisson distribution,

has a single parameter , which is both the mean AND variance of the distribution

in general the variance governs the distribution's shape

distribution of independent event occurences in an interval, e.g. soccer goals in a match

 is the average number of the events in an interval

So, when we apply generalized linear regression in this context, we would identify the family as Poisson.

But there's another step in generalization...

f(x|λ) = ,  where x = 0, 1, 2, …
λxe−λ

x!

λ

λ
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https://en.wikipedia.org/wiki/Poisson_distribution


Generalization: link function
Start with one predictor, linear function: 

Range of this function is  - but for Poisson regression example, we know that  cannot be negative,

We need to transform the linear function to be ! (We could punt and use simple linear

regression, but results may not be meaningful, e.g., we predict  to be negative!)

There is usually no unique transformation, but rather conventional ones

e.g., for Poisson we use the  function as the link function :

Given  with values limited to being either 0 or positive integers, with no upper bound, we

1. assume 

2. assume 

3. use optimization to estimate  and  by maximizing the likelihood function

β0 + β1x

(−∞, ∞) Y

[0, ∞)

Ŷ

log() g()

g(λ|x) = log(λ|x) = β0 + β1x

Y

Y |x ∼ Poisson(λ)

λ|x = eβ0+β1x

β0 β1
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More distributions
Gamma distribution

 continuous, but bounded between 0 and Y |x ∞
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https://en.wikipedia.org/wiki/Gamma_distribution


More distributions
Beta distribution

 continuous, but bounded between 0 and 1Y |x
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https://en.wikipedia.org/wiki/Beta_distribution


More distributions
Bernoulli distribution

 discrete, but can only take on the values 0 and 1

Focus for Wednesday!

Y |x

16 / 16

https://en.wikipedia.org/wiki/Bernoulli_distribution

