
Machine Learning with RMachine Learning with R
tidymodelstidymodels

June 27th, 2023June 27th, 2023

1 / 221 / 22



So far...
Exploratory data analysis: Wrangling, visualization  tidyverse

Unsupervised learning: K-means clustering (stats), Kmeans++ (flexclust), Hierarchical clustering (stats),
minimax linkage (protoclust), Gaussian mixture models (mclust)

Linear regression: simple/multiple linear regression (stats), ridge / lasso / elastic net (glmnet)

Within supervised learning we've only really seen two methods: lm and glmnet, but they've already had
differences:

x and y together? separate?
cross-validation?

→

2 / 22



Pro

You come up with a method, you can code it
right up!

Then I can use your code to fit a model!

Con

Say what? G = k = centers? nzero?

Many ways to do one thing may not be ideal

R is free, open-source, and user-contributed
R comes out of the S programming language (Bell Labs)... object oriented!

But many (if not most) of the things we do in R come from "packages" rather than from "base R", which
includes the base and stats packages

Packages are created by users:

3 / 22



Like the tidyverse, tidymodels is a suite of
packages dedicated to fitting and using models in a
tidy way, enabling interaction with the other
packages we've used so far (dplyr, ggplot, etc.)

parsnip simplifies model parameters and
interfaces

recipes enables feature engineering and
preprocessing

workflows allow you to store and execute
steps together

tune optimizes hyperparameters

(Also like the tidyverse, tidymodels has fantastic
documentation)

Into the tidyverse models

4 / 22

https://www.tidymodels.org/


Data: NFL teams summary
Created dataset using nflfastR summarizing NFL team performances from 1999 to 2021

library(tidyverse)
nfl_teams_data <- read_csv("https://shorturl.at/uwAV2")
nfl_model_data <- nfl_teams_data %>%
  mutate(score_diff = points_scored - points_allowed) %>%
  filter(season >= 2006) %>%
  dplyr::select(-wins, -losses, -ties, -points_scored, -points_allowed, -season, -team)
head(nfl_model_data)

## # A tibble: 6 × 49
##   offense_completion_percentage offense_total_yards_gai…¹ offense_total_yards_…²
##                           <dbl>                     <dbl>                  <dbl>
## 1                         0.561                      3662                   1350
## 2                         0.480                      2371                   2946
## 3                         0.612                      3435                   1667
## 4                         0.564                      2718                   1555
## 5                         0.569                      3264                   1674
## 6                         0.525                      3286                   1940
## # ℹ abbreviated names: ¹​offense_total_yards_gained_pass,
## #   ²​offense_total_yards_gained_run
## # ℹ 46 more variables: offense_ave_yards_gained_pass <dbl>,
## #   offense ave yards gained run <dbl>, offense total air yards <dbl>,

5 / 22

https://www.nflfastr.com/


# Base R
init_reg_base <- lm(score_diff ~ ., 
                    nfl_model_data)

library(glmnet)
init_ridge_glmnet <- glmnet(model_x, model_y,
                          alpha = 0)

Using glmnet
Divide data into matrix of predictors and vector of response

model_x <- model.matrix(score_diff ~ ., nfl_model_data)[, -1]
model_y <- nfl_model_data$score_diff

Fit linear regression models:

Let's leave all that behind...

library(tidymodels)

6 / 22



Instead, specify the model with parsnip
1. Pick a model: in this case, all we need is linear regression, but we could be using e.g. random forests

2. Set the engine: which package should we look to for this method?

3. Set the mode (if needed): are we performing classification or regression?

This lets us use a similar syntax with many, many different kinds of models by just pointing to their own
implementation

According to the tidymodels website, parsnip currently supports 119 types of models and engines!

7 / 22

https://www.tidymodels.org/find/parsnip/


For today...
linear_reg() specifies a model that uses linear regression

linear_reg(
  mode = "regression",  # this is the "default" mode, but could change
  engine = "lm",        # default is to use base R linear model
  penalty = NULL,       # default is no penalty term... OLS
  mixture = NULL # default is no mixture of penalties (patience, grasshopper)
)

We could also use pipes to specify different arguments here

linear_reg() %>% 
  set_mode(mode = "regression") %>% 
  set_engine(engine = "lm")

Save this model specification in an object to use later

lm_spec <- linear_reg()

8 / 22



fit() returns a parsnip model fit on the data,
using your model form

simple_parsnip <- lm_spec %>% 
  fit(    # formula for the model
    score_diff ~ offense_n_plays_run,  
    data = nfl_model_data
  )
simple_parsnip

## parsnip model object
## 
## 
## Call:
## stats::lm(formula = score_diff ~ offense_n_plays_run, data = data)
## 
## Coefficients:
##         (Intercept)  offense_n_plays_run  
##           -323.5461               0.7705

Compare with lm() output

simple_base <- lm(score_diff ~ 
                    offense_n_plays_run,
   data = nfl_model_data)
simple_base

## 
## Call:
## lm(formula = score_diff ~ offense_n_plays_run, dat
## 
## Coefficients:
##         (Intercept)  offense_n_plays_run  
##           -323.5461               0.7705

Train a model based on your specifications: fit()

9 / 22



Generate predictions
Just like with a linear model object, we can get
predictions using predict()

preds <- predict(simple_parsnip, 
        new_data = nfl_model_data)
head(preds)

## # A tibble: 6 × 1
##   .pred
##   <dbl>
## 1 -6.12
## 2 84.8 
## 3 20.1 
## 4 -2.26
## 5 -9.20
## 6 48.6

But with parsnip models, this returns a tibble
rather than a vector

Assess model using RMSE
yardstick package has its own rmse() function!

nfl_lm_mod_assess <- simple_parsnip %>% 
  predict(new_data = nfl_model_data) %>% 
  mutate(obs_score_diff =
           nfl_model_data$score_diff)

rmse(data = nfl_lm_mod_assess,
     truth = obs_score_diff,
     estimate = .pred)

## # A tibble: 1 × 3
##   .metric .estimator .estimate
##   <chr>   <chr>          <dbl>
## 1 rmse    standard        94.6

10 / 22



Which kind of error was that?
Training error! We predicted based on the same data we used to fit the model

But tidymodels makes it really easy to compare train vs. test error as well... Construct a train-test split using
initial_split()

set.seed(1234)
nfl_split <- initial_split(nfl_model_data, 
                           prop = 0.75)  # 3/4 split is default but could change
nfl_split

## <Training/Testing/Total>
## <360/120/480>

Recover the training and test sets using training() and testing()

nfl_train <- training(nfl_split)
nfl_test <- testing(nfl_split)

11 / 22



Fit and assess based on holdout performance

simple_train <- lm_spec %>% 
  fit(score_diff ~ offense_n_plays_run, nfl_train)

predict(simple_train, new_data = nfl_test) %>% 
  mutate(obs_score_diff = nfl_test$score_diff) %>% 
  rmse(truth = obs_score_diff, estimate = .pred)

## # A tibble: 1 × 3
##   .metric .estimator .estimate
##   <chr>   <chr>          <dbl>
## 1 rmse    standard        95.7

Fantastic, we've determined that the test error was greater than the training error.

But this was just for simple linear regression...

12 / 22



Simple  multiple linear regression
All we need to do is specify more variables in our formula

two_var_parsnip <- lm_spec %>% 
  fit(    # formula for the model
    score_diff ~ offense_n_plays_run +
      offense_n_plays_pass,
    data = nfl_train
  )

predict(two_var_parsnip, new_data = nfl_test) %>% 
  mutate(obs_score_diff = nfl_test$score_diff) %>% 
  rmse(truth = obs_score_diff, estimate = .pred)

## # A tibble: 1 × 3
##   .metric .estimator .estimate
##   <chr>   <chr>          <dbl>
## 1 rmse    standard        95.0

But this only used one train-test split? What if I want cross-validation?

→

13 / 22



vfold_cv()

Rather than using a simple train-test split, assign observations to one of ten folds

Then, fit the model using fit_resamples()

set.seed(52)
folds <- vfold_cv(nfl_model_data, v = 10) 
two_var_cv <- lm_spec %>% 
  fit_resamples(score_diff ~ offense_n_plays_run + 
                  offense_n_plays_pass, 
                folds)

This gives us a really big model object, with performance metrics on all the folds, which we can view using
collect_metrics()

collect_metrics(two_var_cv)

## # A tibble: 2 × 6
##   .metric .estimator   mean     n std_err .config             
##   <chr>   <chr>       <dbl> <int>   <dbl> <chr>               
## 1 rmse    standard   93.4      10  2.32   Preprocessor1_Model1
## 2 rsq     standard    0.168    10  0.0285 Preprocessor1_Model1 14 / 22



But why tho???

Didn't we do all this the other day???

15 / 22



What we did the other day:
With glmnet, we could fit lasso and ridge regression models with 10-fold cross-validation

cv.glmnet would determine the best value for , given a value for , but if we wanted to use elastic net we
had to code the CV ourselves:

set.seed(2020)
fold_id <- sample(rep(1:10, length.out = nrow(model_x)))

cv_en_25 <- cv.glmnet(model_x, model_y, foldid = fold_id, alpha = .25)
cv_en_50 <- cv.glmnet(model_x, model_y, foldid = fold_id, alpha = .5)
cv_ridge <- cv.glmnet(model_x, model_y, foldid = fold_id, alpha = 0)
cv_lasso <- cv.glmnet(model_x, model_y, foldid = fold_id, alpha = 1)

which.min(c(min(cv_en_25$cvm), min(cv_en_50$cvm), min(cv_ridge$cvm), min(cv_lasso$cvm)))

With tidymodels, specifically tune, we can do this all in one go!

λ α

16 / 22



From multiple linear regression to regularized regression...
Add a penalization term!

Remember our initial model form using parsnip? All we need to do is modify the arguments for engine,
penalty, and mixture!

ridge_example <- linear_reg(
  mode = "regression",  
  engine = "glmnet",        # instead of `lm` change to `glmnet`
  penalty = 0.1,            # set lambda here
  mixture = 0 # "mixture" == "alpha"
)

penalty = "lambda"

mixture = "alpha" from yesterday

But you picked those penalty and mixture values yourself!?

17 / 22



tune picks the best for you!

elastic_net_spec <- linear_reg(
  mode = "regression",  
  engine = "glmnet",
  penalty = tune(),
  mixture = tune()
)

tune() acts like a placeholder when specifying the hyperparameters for the model

Specify values to try using the dials package

I want evenly spaced values for the penalty term  and the mixture term , and I want five of each:

elnet_grid <- grid_regular(penalty(), mixture(),
                           levels = 5)

λ α

18 / 22



Model tuning with a grid
First, create the folds as before

set.seed(52)
folds <- vfold_cv(nfl_model_data, v = 10)

Then, fit models using tune_grid() to use each combination of penalty and mixture values

elnet_resample <- tune_grid(
  elastic_net_spec,
  score_diff ~ .,
  resamples = folds,
  grid = elnet_grid
)

19 / 22



elnet_resample %>%
  collect_metrics() %>%
  filter(.metric == "rmse") %>% 
  mutate(mixture = factor(mixture)) %>%
  ggplot(aes(x = penalty, 
             y = mean, 
             color = mixture)) +
  geom_line(size = 1.5, alpha = 0.6) +
  geom_point(size = 2) +
  scale_x_log10(labels = 
                  scales::label_number()) +
  theme_bw()

Which models (which hyperparameter values) performed best?

20 / 22



Picking the best one...

best_elnet <- elnet_resample %>% 
  select_best("rmse")

final_elnet <- linear_reg(
  engine = "glmnet", penalty = best_elnet$penalty, mixture = best_elnet$mixture
) %>% 
  fit(score_diff ~ ., data = nfl_train)

So then we can use this model to generate predictions, etc.

21 / 22



Recipes and Workflows
Two more packages within tidymodels that allow you to keep track of and recreate your data wrangling and
model specification process

Recipe = formula + data

Can specify "roles" for different variables, e.g. tell that a particular column acts as an ID

Turn a factor variable into dummy variables, e.g. what if we wanted a predictor for each team in the
NFL?

Workflow = model + recipe

Can combine different preprocessing setups (recipes) with different model specs (from parsnip) to
compare

Stores all model results, predictions, etc. in an object where they can be extracted

All in all, tidymodels allows for great flexibility, while minimizing headaches

22 / 22


