
Supervised LearningSupervised Learning
RegularizationRegularization

June 26th, 2023June 26th, 2023

1 / 261 / 26

Previously...
We talked about variable selection in the linear model context:

Why would we attempt to select a subset of the variables?

To improve model interpretability

Occam's razor: simplest model wins!

Eliminating uninformative predictors is obviously a good thing when your goal is to tell the story of
how your predictors are associated with your response.

To improve prediction accuracy

Eliminating uninformative predictors can lead to lower variance in the test-set MSE, at the expense of
a slight increase in bias

Ŷ = β̂0 + β̂1x1 + ⋯ + β̂pxp

p

2 / 26

Best subset selection
Start with the null model (intercept-only) that has no predictors

just predicts the sample mean for each observation

For (each possible number of predictors)

Fit all with exactly predictors

Pick the best (some criteria) among these models, call it

Best can be up to the user: cross-validation error, highest adjusted , etc.

Select a single best model from among

This is not typically used in research!

only practical for a smaller number of variables

M0

k = 1, 2, … , p

() =p

k

p!

k!(p−k)!
k

()p

k
Mk

R2

M0, … ,Mp

3 / 26

Remember the bias-variance tradeoff

Introduce bias but decrease variance to improve predictions

Some questions

How do we know that there is a trade-off between Bias and Variance?

How can we check that it is and not without doing any calcs?

MSE = (Bias)2 + Variance

(Bias)2 (Bias)

4 / 26

Shrinkage methods: Ridge regression
Ridge regression introduces a shrinkage penalty by minimizing:

or more succinctly we want to minimize:

as increases flexibility of models decreases

increases bias, but decreases variance

for fixed value of , ridge regression fits only a single model

need to use cross-validation to tune

λ ≥ 0

n

∑
i

(Yi − β0 −
p

∑
j

βjxij)
2

+ λ

p

∑
j

β2
j

= RSS + λ

p

∑
j

β2
j

∥Y − Xβ∥2
2 + λ∥β∥2

2

λ ⇒

λ

λ

5 / 26

Shrinkage methods: Ridge regression
For example: note how the magnitude of the coefficient for Income trends as

The coefficient shrinks towards zero, but never actually reaches it

Income is always a variable in the learned model, regardless of the value of

λ → ∞

λ
6 / 26

Shrinkage methods: Lasso regression
Ridge regression keeps all variables

But we may believe there is a sparse solution

Lasso enables variable selection with by minimizing:

or more succinctly we want to minimize:

Lasso uses an ("ell 1") penalty

as increases flexibility of models decreases

increases bias, but decreases variance

Can handle the case, i.e. more variables than observations!

λ

n

∑
i

(Yi − β0 −
p

∑
j

βjXij)
2

+ λ

p

∑
j

|βj| = RSS + λ

p

∑
j

|βj|

∥Y − Xβ∥2
2 + λ∥β∥1

ℓ1

λ ⇒

p > n

7 / 26

Shrinkage methods: Lasso regression
Lasso regression performs variable selection yielding sparse models

The coefficient shrinks towards and eventually equals zero at

if the optimum value of is larger, then Income would NOT be included in the learned model

λ ≈ 1000

λ
8 / 26

Which do we use?

9 / 26

Best of both worlds? Elastic net

 is the norm:

 is the , Euclidean, norm:

Ridge penalty:

Lasso penalty:

 controls the mixing between the two types, ranges from 0 to 1

 returns lasso

 return ridge

n

∑
i

(Yi − β0 −
p

∑
j

βjXij)

2

+ λ [(1 − α)∥β∥2
2/2 + α∥β∥1]

||β||1 ℓ1 ||β||1 = ∑p

j
|βj|

||β||2 ℓ2 ||β||2 =√∑p

j
β2

j

λ ⋅ (1 − α)/2

λ ⋅ α

α

α = 1

α = 0

10 / 26

Caveats to consider...
For either ridge, lasso, or elastic net: you should standardize your data

Common convention: within each column, compute then subtract off the sample mean, and compute the
divide off the sample standard deviation:

glmnet package does this by default and reports coefficients on the original scale

 and are tuning parameters

Have to select appropriate values based on test data / cross-validation

When using glmnet, the cv.glmnet() function will perform the cross-validation for you

~xij =
xij − x̄j

sx,j

λ α

11 / 26

https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html

Example data: NFL teams summary
Created dataset using nflfastR summarizing NFL team performances from 1999 to 2020

library(tidyverse)

nfl_teams_data <- read_csv("https://shorturl.at/uwAV2")

nfl_model_data <- nfl_teams_data %>%

 mutate(score_diff = points_scored - points_allowed) %>%

Only use rows with air yards

 filter(season >= 2006) %>%

 dplyr::select(-wins, -losses, -ties, -points_scored, -points_allowed, -season, -team)

12 / 26

https://www.nflfastr.com/

Introduction to glmnet
We will use the glmnet package for ridge, lasso, and elastic net

library(glmnet)

could use the model.matrix() function (which converts factors to 0-1 dummy variables!)

model_x <- nfl_model_data %>%

 dplyr::select(-score_diff) %>%

 as.matrix()

model_y <- nfl_model_data$score_diff

model_x <- model.matrix(score_diff ~ ., nfl_model_data)[, -1]

13 / 26

https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html#lin

What do the initial regression coefficients look
like?

Use broom to tidy model output for plotting

init_reg_fit <- lm(score_diff ~ ., nfl_model_

library(broom)

tidy(init_reg_fit) %>%

 mutate(coef_sign = as.factor(sign(estimate)

 term = fct_reorder(term, estimate))

 ggplot(aes(x = term, y = estimate, fill = c

 geom_bar(stat = "identity", color = "white"

 scale_fill_manual(values = c("darkred", "da

 guide = FALSE) +

 coord_flip() + theme_bw()

Initial model with lm()

14 / 26

https://broom.tidymodels.org/reference/tidy.cv.glmnet.html

Ridge regression example
Perform ridge regression using glmnet with alpha = 0 (more on that later)

By default it standardizes your predictors and fits model across a range of values (can plot these!)

init_ridge_fit <- glmnet(model_x, model_y, alpha = 0)

plot(init_ridge_fit, xvar = "lambda")

λ

15 / 26

Ridge regression example
We use cross-validation to select with cv.glmnet() which uses 10-folds by default

specify ridge regression with alpha = 0

fit_ridge_cv <- cv.glmnet(model_x, model_y, alpha = 0)

plot(fit_ridge_cv)

λ

16 / 26

tidy_ridge_coef <- tidy(fit_ridge_cv$glmnet.f

tidy_ridge_coef %>%

 ggplot(aes(x = lambda, y = estimate,

 group = term)) +

 scale_x_log10() +

 geom_line(alpha = 0.75) +

 geom_vline(xintercept =

 fit_ridge_cv$lambda.min) +

 geom_vline(xintercept =

 fit_ridge_cv$lambda.1se,

 linetype = "dashed", color = "re

 theme_bw()

Tidy ridge regression

17 / 26

tidy_ridge_cv <- tidy(fit_ridge_cv)

tidy_ridge_cv %>%

 ggplot(aes(x = lambda, y = estimate)) +

 geom_line() + scale_x_log10() +

 geom_ribbon(aes(ymin = conf.low,

 ymax = conf.high), alpha =

 geom_vline(xintercept =

 fit_ridge_cv$lambda.min) +

 geom_vline(xintercept =

 fit_ridge_cv$lambda.1se,

 linetype = "dashed", color = "re

 theme_bw()

Tidy ridge regression

18 / 26

Coefficients using the 1 standard error rule

tidy_ridge_coef %>%

 filter(lambda == fit_ridge_cv$lambda.1se) %

 mutate(coef_sign = as.factor(sign(estimate)

 term = fct_reorder(term, estimate))

 ggplot(aes(x = term, y = estimate, fill = c

 geom_bar(stat = "identity", color = "white"

 scale_fill_manual(values = c("darkred", "da

 coord_flip() + theme_bw()

Ridge regression coefficients

λ

19 / 26

Similar syntax to ridge but specify alpha = 1:

fit_lasso_cv <- cv.glmnet(model_x, model_y,

 alpha = 1)

tidy_lasso_coef <- tidy(fit_lasso_cv$glmnet.f

tidy_lasso_coef %>%

 ggplot(aes(x = lambda, y = estimate,

 group = term)) +

 scale_x_log10() +

 geom_line(alpha = 0.75) +

 geom_vline(xintercept =

 fit_lasso_cv$lambda.min) +

 geom_vline(xintercept =

 fit_lasso_cv$lambda.1se,

 linetype = "dashed", color = "re

 theme_bw()

Lasso regression example

20 / 26

Number of non-zero predictors by

tidy_lasso_cv <- tidy(fit_lasso_cv)

tidy_lasso_cv %>%

 ggplot(aes(x = lambda, y = nzero)) +

 geom_line() +

 geom_vline(xintercept = fit_lasso_cv$lambda

 geom_vline(xintercept = fit_lasso_cv$lambda

 linetype = "dashed", color = "re

 scale_x_log10() + theme_bw()

Reduction in variables using 1 standard error rule

Lasso regression example

λ

λ

21 / 26

Coefficients using the 1 standard error rule

tidy_lasso_coef %>%

 filter(lambda == fit_lasso_cv$lambda.1se) %

 mutate(coef_sign = as.factor(sign(estimate)

 term = fct_reorder(term, estimate))

 ggplot(aes(x = term, y = estimate,

 fill = coef_sign)) +

 geom_bar(stat = "identity", color = "white"

 scale_fill_manual(values = c("darkred", "da

 guide = FALSE) +

 coord_flip() +

 theme_bw()

Lasso regression example

λ

22 / 26

Elastic net example
Need to tune both and - can do so manually with our own folds

set.seed(2020)

fold_id <- sample(rep(1:10, length.out = nrow(model_x)))

Then use cross-validation with these folds for different candidate alpha values:

cv_en_25 <- cv.glmnet(model_x, model_y, foldid = fold_id, alpha = .25)

cv_en_50 <- cv.glmnet(model_x, model_y, foldid = fold_id, alpha = .5)

cv_ridge <- cv.glmnet(model_x, model_y, foldid = fold_id, alpha = 0)

cv_lasso <- cv.glmnet(model_x, model_y, foldid = fold_id, alpha = 1)

Can see which one had the lowest CV error among its candidate values:

which.min(c(min(cv_en_25$cvm), min(cv_en_50$cvm), min(cv_ridge$cvm), min(cv_lasso$cvm)))

[1] 2

λ α

λ

23 / 26

Can view same type of summary

tidy(cv_en_50) %>%

 ggplot(aes(x = lambda, y = nzero)) +

 geom_line() +

 geom_vline(xintercept = cv_en_50$lambda.min

 geom_vline(xintercept = cv_en_50$lambda.1se

 linetype = "dashed",

 color = "red") +

 scale_x_log10() +

 theme_bw()

More relaxed than lasso for variable entry

Elastic net example

24 / 26

Comparison of models based on holdout performance

set.seed(2020)

nfl_model_data <- nfl_model_data %>% mutate(test_fold = sample(rep(1:5, length.out = n())))

holdout_predictions <-

 map_dfr(unique(nfl_model_data$test_fold),

function(holdout) {

Separate test and training data:

 test_data <- nfl_model_data %>% filter(test_fold == holdout)

 train_data <- nfl_model_data %>% filter(test_fold != holdout)

Repeat for matrices

 test_x <- as.matrix(dplyr::select(test_data, -score_diff))

 train_x <- as.matrix(dplyr::select(train_data, -score_diff))

Train models:

 lm_model <- lm(score_diff ~ ., data = train_data)

 ridge_model <- cv.glmnet(train_x, train_data$score_diff, alpha = 0)

 lasso_model <- cv.glmnet(train_x, train_data$score_diff, alpha = 1)

 en_model <- cv.glmnet(train_x, train_data$score_diff, alpha = .5)

Return tibble of holdout results:

 tibble(lm_preds = predict(lm_model, newdata = test_data),

 ridge_preds = as.numeric(predict(ridge_model, newx = test_x)),

 lasso_preds = as.numeric(predict(lasso_model, newx = test_x)),

 en_preds = as.numeric(predict(en_model, newx = test_x)),

 test_actual = test_data$score_diff, test_fold = holdout)

})
25 / 26

Compute RMSE across folds with std error intervals

holdout_predictions %>%

 pivot_longer(lm_preds:en_preds,

 names_to = "type", values_to =

 group_by(type, test_fold) %>%

 summarize(rmse =

 sqrt(mean((test_actual - test_p

 ggplot(aes(x = type, y = rmse)) +

 geom_point() + theme_bw() +

 stat_summary(fun = mean, geom = "point",

 color = "red") +

 stat_summary(fun.data = mean_se, geom = "er

 color = "red")

Predictions compared to lm?

In this case lm actually "beat" regularization, but within intervals

26 / 26

