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Simple linear regression
We assume a linear relationship for :

 is the th value for the response variable

 is the th value for the predictor variable

 is an unknown, constant intercept: average value for  if 

 is an unknown, constant slope: increase in average value for  for each one-unit increase in 

 is the random noise: assume independent, identically distributed (iid) from Normal distribution

Y = f(X)

Yi = β0 + β1Xi + ϵi,  for i = 1, 2, … ,n

Yi i

Xi i

β0 Y X = 0

β1 Y X

ϵi

ϵi
iid
∼ N(0,σ2)  with constant variance σ2
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We are estimating the conditional expection
(mean) for :

average value for  given the value for 

averaging out the error  (disappears because 
has mean 0)

Simple linear regression estimation

Y

E[Yi|Xi] = β0 + β1Xi

Y X

ϵ ϵ
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How do we estimate the best fitting line?
Ordinary least squares (OLS) - by minimizing the residual sum of squares (RSS)

Remember MSE? 

RSS is similar: not a mean (no ), but it is the sum of the squared differences

 in this case is the model specified before: 

Minimized at

where  and 

RSS (β0,β1) =
n

∑
i=1

[Yi − (β0 + β1Xi)]2 =
n

∑
i=1

(Yi − β0 − β1Xi)
2

∑n

i (Yi − f̂ (Xi))21
n

1
n

f(X) β0 − β1Xi

β̂ 1 =  and  β̂ 0 = Ȳ − β̂ 1X̄
∑n

i=1 (Xi − X̄) (Yi − Ȳ )

∑n

i=1 (Xi − X̄)
2

X̄ = ∑n

i=1 Xi
1
n

Ȳ = ∑n

i=1 Yi
1
n
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Connection to covariance and correlation
Covariance describes the joint variability of two variables

We compute the sample covariance (use  since we are using the means and want unbiased estimates)

Correlation is a normalized form of covariance, ranges from -1 to 1

Sample correlation uses the sample covariance and standard deviations, e.g. 

Cov(X,Y ) = σX,Y = E[(X − E[X])(Y − E[Y ])]

n − 1

σ̂X,Y =
n

∑
i=1

(Xi − X̄) (Yi − Ȳ )
1

n − 1

ρX,Y =
Cov(X,Y )

σX ⋅ σY

s2
X

= ∑
i
(Xi − X̄)21

n−1

rX,Y =
∑n

i=1 (Xi − X̄) (Yi − Ȳ )

√∑n

i=1 (Xi − X̄)
2
∑n

i=1 (Yi − Ȳ )
2
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https://en.wikipedia.org/wiki/Covariance
https://lazyprogrammer.me/covariance-matrix-divide-by-n-or-n-1/


Connection to covariance and correlation
So we have the following:

 Can rewrite  as:

 Can rewrite  as:

Can think of  weighting the ratio of variance between  and ...

β̂ 1 =  compared to  rX,Y =
∑n

i=1 (Xi − X̄) (Yi − Ȳ )

∑n

i=1 (Xi − X̄)
2

∑n

i=1 (Xi − X̄) (Yi − Ȳ )

√∑n

i=1 (Xi − X̄)
2
∑n

i=1 (Yi − Ȳ )
2

⇒ β̂1

β̂ 1 = rX,Y ⋅
sY

sX

⇒ rX,Y

rX,Y = β̂ 1 ⋅
sX

sY

β̂ 1 X Y
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Gapminder data
Health and income outcomes for 184 countries from 1960 to 2016 from the famous Gapminder project

library(tidyverse)
library(dslabs)
gapminder <- as_tibble(gapminder)
clean_gapminder <- gapminder %>%
  filter(year == 2011, !is.na(gdp)) %>%
  mutate(log_gdp = log(gdp))
clean_gapminder

## # A tibble: 168 × 10

##    country   year infan…¹ life_…² ferti…³ popul…⁴     gdp conti…⁵ region log_gdp
##    <fct>    <int>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl> <fct>   <fct>    <dbl>
##  1 Albania   2011    14.3    77.4    1.75  2.89e6 6.32e 9 Europe  South…    22.6
##  2 Algeria   2011    22.8    76.1    2.83  3.67e7 8.11e10 Africa  North…    25.1
##  3 Angola    2011   107.     58.1    6.1   2.19e7 2.70e10 Africa  Middl…    24.0
##  4 Antigua…  2011     7.2    75.9    2.12  8.82e4 8.02e 8 Americ… Carib…    20.5
##  5 Argenti…  2011    12.7    76      2.2   4.17e7 4.73e11 Americ… South…    26.9
##  6 Armenia   2011    15.3    73.5    1.5   2.97e6 4.29e 9 Asia    Weste…    22.2
##  7 Austral…  2011     3.8    82.2    1.88  2.25e7 5.73e11 Oceania Austr…    27.1
##  8 Austria   2011     3.4    80.7    1.44  8.42e6 2.31e11 Europe  Weste…    26.2
##  9 Azerbai…  2011    32.5    70.8    1.96  9.23e6 2.14e10 Asia    Weste…    23.8
## 10 Bahamas   2011    11.1    72.6    1.9   3.67e5 6.76e 9 Americ… Carib…    22.6
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https://www.gapminder.org/data


Interested in modeling a country's life expectancy

clean_gapminder %>%
  ggplot(aes(x = life_expectancy)) +
  geom_histogram(color = "black", 
                 fill = "darkblue",
                 alpha = 0.3) +
  theme_bw() +
  labs(x = "Life expectancy")

Modeling life expectancy
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gdp_plot <- clean_gapminder %>%
  ggplot(aes(x = log_gdp,
             y = life_expectancy)) +
  geom_point(alpha = 0.5) +
  theme_bw() +
  labs(x = "log(GDP)",
       y = "Life expectancy")
gdp_plot

We fit linear regression models using lm(),
formula is input as: response ~ predictor

init_lm <- lm(life_expectancy ~ log_gdp,
              data = clean_gapminder)

Relationship between life expectancy and log(GDP)
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View the model summary()

summary(init_lm)

## 
## Call:
## lm(formula = life_expectancy ~ log_gdp, data = clean_gapminder)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.901  -4.781   1.879   5.335  13.962 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   24.174      5.758   4.198 4.38e-05 ***
## log_gdp        1.975      0.242   8.161 7.87e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.216 on 166 degrees of freedom
## Multiple R-squared:  0.2864,    Adjusted R-squared:  0.2821 
## F-statistic: 66.61 on 1 and 166 DF,  p-value: 7.865e-14
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Inference with OLS

Reports the intercept and coefficient estimates: 

Estimates of uncertainty for s via standard errors: 

-statistics are coefficients Estimates / Std. Error, i.e., number of standard deviations from 0

p-values (i.e., Pr(>|t|)): estimated probability observing value as extreme as |t value| given the null
hypothesis 

p-value  conventional threshold of , sufficient evidence to reject the null hypothesis that
the coefficient is zero,

Typically |t values|  indicate significant relationship at 

i.e., there is a significant association between life_expectancy and log_gdp

β̂0 ≈ 24.174 , β̂1 ≈ 1.975

β ŜE(β̂0) ≈ 5.758 , ŜE(β̂1) ≈ 0.242

t

β = 0

< α = 0.05

> 2 α = 0.05

11 / 22



Be careful!
Caveats to keep in mind regarding p-values:

If the true value of a coefficient , then the p-value is sampled from a Uniform(0,1) distribution

i.e., it is just as likely to have value 0.45 as 0.16 or 0.84 or 0.9999 or 0.00001...

 Hence why we typically only reject for low  values like 0.05

Controlling the Type 1 error rate at , i.e., the probability of a false positive mistake

5% chance that you'll conclude there's a significant association between  and  even when there is
none

Remember what a standard error is? 

 As  gets large standard error goes to zero, and all predictors are eventually deemed significant

While the p-values might be informative, we will explore other approaches to determine which subset of
predictors to include (e.g., holdout performance)

β = 0

⇒ α

α = 0.05

x y

SE = σ

√n

⇒ n
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https://en.wikipedia.org/wiki/Continuous_uniform_distribution


Back to the model summary: Multiple R-squared
Back to the connection between the coefficient and correlation:

Compute the correlation with cor():

with(clean_gapminder, cor(log_gdp, life_expectancy))

## [1] 0.5351189

The squared cor matches the reported Multiple R-squared

with(clean_gapminder, cor(log_gdp, life_expectancy))^2

## [1] 0.2863522

rX,Y = β̂ 1 ⋅ ⇒ r2
X,Y = β̂

2

1 ⋅
sX

sY

s2
X

s2
Y
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Back to the model summary: Multiple R-squared
Back to the connection between the coefficient and correlation:

 (or also ) estimates the proportion of the variance of  explained by 

More generally: variance of model predictions / variance of 

var(predict(init_lm)) / var(clean_gapminder$life_expectancy)

## [1] 0.2863522

rX,Y = β̂ 1 ⋅ ⇒ r2
X,Y = β̂

2

1 ⋅
sX

sY

s2
X

s2
Y

r2 R2 Y X

Y

14 / 22



Generating predictions
We can use the predict() function to either get the fitted values of the regression:

train_preds <- predict(init_lm)
head(train_preds)

##        1        2        3        4        5        6 
## 68.74401 73.78465 71.61243 64.66585 77.26605 67.97876

Which is equivalent to using:

head(init_lm$fitted.values)

##        1        2        3        4        5        6 
## 68.74401 73.78465 71.61243 64.66585 77.26605 67.97876
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us_data <- clean_gapminder %>% 
  filter(country == "United States")

new_us_data <- us_data %>%
  dplyr::select(country, gdp) %>%
  slice(rep(1, 3)) %>%
  mutate(adj_factor = c(0.25, 0.5, 0.75),
         log_gdp = log(gdp * adj_factor))
new_us_data$pred_life_exp <- 
  predict(init_lm, newdata = new_us_data)
gdp_plot +
  geom_point(data = new_us_data,
             aes(x = log_gdp,
                 y = pred_life_exp),
             color = "darkred", size = 5)

Predictions for new data
Or we can provide it newdata which must contain the explanatory variables:
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clean_gapminder %>%
  mutate(pred_vals = predict(init_lm)) %>%
  ggplot(aes(x = pred_vals,
             y = life_expectancy)) +
  geom_point(alpha = 0.5) +
  geom_abline(slope = 1, intercept = 0,
              linetype = "dashed",
              color = "red",
              size = 2) +
  theme_bw()

"Perfect" model will follow diagonal

Plot observed values against predictions

Useful diagnostic (for any type of model, not just linear regression!)
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clean_gapminder <- 
  broom::augment(init_lm, clean_gapminder)
clean_gapminder %>%
  ggplot(aes(x = .fitted, 
             y = life_expectancy)) +
  geom_point(alpha = 0.5) +
  geom_abline(slope = 1, intercept = 0,
              linetype = "dashed",
              color = "red",
              size = 2) +
  theme_bw()

Adds various columns from model fit we can
use in plotting for model diagnostics

Plot observed values against predictions

Can augment the data with model output using the broom package
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https://cran.r-project.org/web/packages/broom/vignettes/broom.html


Residuals = observed - predicted

Conditional on the predicted values, the
residuals should have a mean of zero

clean_gapminder %>%
  ggplot(aes(x = .fitted, 
             y = .resid)) +
  geom_point(alpha = 0.5) +
  geom_hline(yintercept = 0,
             linetype = "dashed",
             color = "red",
             size = 2) +

# To plot the residual mean

  geom_smooth(se = FALSE) +
  theme_bw()

Residuals should NOT display any pattern

Plot residuals against predicted values
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Multiple regression
We can include as many variables as we want (assuming !)

OLS estimates in matrix notation (  is a  matrix):

Can just add more variables to the formula in R

multiple_lm <- lm(life_expectancy ~ log_gdp + fertility,
                  data = clean_gapminder)

Use the Adjusted R-squared when including multiple variables 

Adjusts for the number of variables in the model 

Adding more variables will always increase Multiple R-squared

n > p

Y = β0 + β1X1 + β2X2 + ⋯ + βpXp + ϵ

X n × p

β̂ = (XTX)−1XTY

= 1 −
(1−R2)(n−1)

(n−p−1)

p
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What about the Normal distribution assumption???

 is the random noise: assume independent, identically distributed (iid) from Normal distribution

OLS doesn't care about this assumption, it's just estimating coefficients!

In order to perform inference, we need to impose additional assumptions

By assuming , what we really mean is:

So we're estimating the mean  of this conditional distribution, but what about ?

Unbiased estimate , its square root is the Residual standard error

Degrees of freedom: , data supplies us with  "degrees of freedom" and we used up 

Y = β0 + β1X1 + β2X2 + ⋯ + βpXp + ϵ

ϵi

ϵi
iid
∼ N(0,σ2)  with constant variance σ2

ϵi
iid
∼ N(0,σ2)

Y
iid
∼ N(β0 + β1X1 + β2X2 + ⋯ + βpXp,σ2)

μ σ2

σ̂2 = RSS

n−(p+1)

n − (p + 1) n p + 1
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https://bradleyboehmke.github.io/HOML/linear-regression.html#simple-linear-regression


Check the assumptions about normality with ggfortify

library(ggfortify)
autoplot(multiple_lm, ncol = 4) + theme_bw()

Standardized residuals = residuals / sd(residuals) (see also .std.resid from augment)
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https://cran.r-project.org/web/packages/ggfortify/vignettes/plot_lm.html

