# Model-based clustering

Gaussian mixture models

June 15th, 2023

# Previously...

- We explored the use of K-means and hierarchical clustering for clustering
- These methods yield **hard** assignments, strictly assigning observations to only one cluster
- What about **soft** assignments? Allow for some **uncertainty** in the clustering results
- Welcome to the wonderful world of **mixture models**



# Previously in kernel density estimation...

$$ext{Kernel density estimate:} \ \hat{f}\left(x
ight) = rac{1}{n}\sum_{i=1}^{n}rac{1}{h}K_{h}(x-x_{i})$$

• We have to use every observation when estimating the density for new points



• Instead we can make **assumptions** to "simplify" the problem

# Mixture models

We assume the distribution f(x) is a **mixture** of *K* component distributions:

$$f(x) = \sum_{k=1}^K \pi_k f_k(x)$$

•  $\pi_k =$  mixing proportions (or weights), where  $\pi_k > 0$ , and  $\sum_k \pi_k = 1$ 

This is a **data generating process**, meaning to generate a new point:

1. pick a distribution / component among our K options, by introducing a new variable:

 $\cdot z \sim ext{Multinomial}(\pi_1, \pi_2, \dots, \pi_k)$ , i.e. categorical variable saying which group the new point is from

2. generate an observation with that distribution / component, i.e.  $x|z\sim f_z$ 

So what do we use for each  $f_k$ ?

# Gaussian mixture models (GMMs)

Assume a **parametric mixture model**, with **parameters**  $\theta_k$  for the kth component

$$f(x) = \sum_{k=1}^K \pi_k f_k(x; heta_k)$$

Assume each component is Gaussian / Normal where for 1D case:

$$f_k(x; heta_k)=N(x;\mu_k,\sigma_k^2)=rac{1}{\sqrt{2\pi\sigma_k^2}}{
m exp}\Big(-rac{(x-\mu_k)^2}{2\sigma_k^2}\Big)$$

We need to estimate each  $\pi_1, \ldots, \pi_k, \mu_1, \ldots, \mu_k, \sigma_1, \ldots, \sigma_k!$ 

# Let's pretend we only have one component...

If we have *n* observations from a single Normal distribution, we estimate the distribution parameters using the **likelihood function**, the probability / density of observing the data given the parameters

$$\mathcal{L}(\mu,\sigma|x_1,\ldots,x_n)=f(x_1,\ldots,x_n|\mu,\sigma)=\prod_i^nrac{1}{\sqrt{2\pi\sigma^2}}\mathrm{exp}~-rac{(x_i-\mu)^2}{2\sigma^2}$$

We can compute the **maximum likelihood estimates (MLEs)** for  $\mu$  and  $\sigma$ 

#### You already know these values!

• 
$$\hat{\mu}_{MLE} = rac{1}{n}\sum_{i}^{n}x_{i}$$
, sample mean

• 
$$\hat{\sigma}_{MLE} = \sqrt{rac{1}{n}\sum_{i}^{n}(x_i-\mu)^2}$$
, sample standard deviation (plug in  $\hat{\mu}_{MLE}$ )

# The problem with more than one component...

- We don't know which component an observation belongs to
- **IF WE DID KNOW**, then we could compute each component's MLEs as before
- But we don't know because *z* is a **latent variable**! So what about its distribution given the data?

$$egin{aligned} P(z_i = k | x_i) &= rac{P(x_i | z_i = k) P(z_i = k)}{P(x_i)} \ &= rac{\pi_k N\left(\mu_k, \sigma_k^2
ight)}{\sum_{k=1}^K \pi_k N\left(\mu_k, \sigma_k
ight)} \end{aligned}$$

- But we do NOT know these parameters!
- This leads to a very useful algorithm in statistics...



# Expectation-maximization (EM) algorithm

We alternate between the following:

- *pretending* to know the probability each observation belongs to each group, to estimate the parameters of the components
- *pretending* to know the parameters of the components, to estimate the probability each observation belong to each group

### Where have you seen this before? K-means algorithm!

- 1. Start with initial guesses about  $\pi_1, \ldots, \pi_k, \mu_1, \ldots, \mu_k, \sigma_1, \ldots, \sigma_k$
- 2. Repeat until nothing changes:
- Expectation step: calculate  $\hat{z}_{ik}$  = expected membership of observation i in cluster k
- Maximization step: update parameter estimates with weighted MLE using  $\hat{z}_{ik}$

# How does this relate back to clustering?

From the EM algorithm:  $\hat{z}_{ik}$  is a **soft membership** of observation *i* in cluster *k* 

- you can assign observation i to a cluster with the largest  $\hat{z}_{ik}$
- measure cluster assignment  $\mathbf{uncertainty} = 1 \max_k \hat{z}_{ik}$

### Our parameters determine the type of clusters

In 1D we only have two options:

1. each cluster is assumed to have equal variance (spread):  $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2$ 

2. each cluster **is allowed to have a different variance** 

But that is only 1D... what happens in multiple dimensions?

## Multivariate GMMs

$$f(x) = \sum_{k=1}^K \pi_k f_k(x; heta_k)$$
 where  $f_k(x; heta_k) \sim N(oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$ 

Each component is a **multivariate normal distribution**:

- $\boldsymbol{\mu}_k$  is a *vector* of means in p dimensions
- $\mathbf{\Sigma}_k$  is the p imes p covariance matrix describes the joint variability between pairs of variables

$$\sum = \begin{bmatrix} \sigma_1^2 & \sigma_{1,2} & \cdots & \sigma_{1,p} \\ \sigma_{2,1} & \sigma_2^2 & \cdots & \sigma_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p,1} & \sigma_{p,2}^2 & \cdots & \sigma_p^2 \end{bmatrix}$$

# Covariance constraints

$$\sum = \begin{bmatrix} \sigma_1^2 & \sigma_{1,2} & \cdots & \sigma_{1,p} \\ \sigma_{2,1} & \sigma_2^2 & \cdots & \sigma_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p,1} & \sigma_{p,2}^2 & \cdots & \sigma_p^2 \end{bmatrix}$$

As we increase the number of dimensions, model fitting and estimation becomes increasingly difficult

We can use **constraints** on multiple aspects of the k covariance matrices:

- volume: size of the clusters, i.e., number of observations,
- shape: direction of variance, i.e. which variables display more variance
- orientation: aligned with axes (low covariance) versus tilted (due to relationships between variables)



- Control volume, shape, orientation
- E means equal and V means variable (VVV is the most flexible, but has the most parameters)
- Two II is **spherical**, one I is **diagonal**, and the remaining are **general**

# So many options! How do we know what to do?



# Bayesian information criterion (BIC)

This is a statistical model

$$f(x) = \sum_{k=1}^K \pi_k f_k(x; heta_k) \ ext{where} \ f_k(x; heta_k) \sim N(oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$$

Meaning we can use a **model selection** procedure for determining which best characterizes the data Specifically - we will use a **penalized likelihood** measure

$$BIC = 2\log \mathcal{L} - m\log n$$

- $\log \mathcal{L}$  is the log-likelihood of the considered model
- with m parameters (VVV has the most parameters) and n observations
- **penalizes** large models with **many clusters without constraints**
- we can use BIC to choose the covariance constraints AND number of clusters K!

The above BIC is really the -BIC of what you typically see, this sign flip is just for ease

### Mixture model for NBA players... New dataset!

Created dataset of NBA player statistics per 100 possessions using ballr

```
library(tidyverse)
nba_pos_stats <-
    read_csv("https://shorturl.at/mFGY2")
# Find rows for players indicating a full season worth of stats
tot_players <- nba_pos_stats %>% filter(tm == "TOT")
# Stack this dataset with players that played on just one team
nba_player_stats <- nba_pos_stats %>%
    filter(!(player %in% tot_players$player)) %>%
    bind_rows(tot_players)
# Filter to only players with at least 125 minutes played
nba_filtered_stats <- nba_player_stats %>% filter(mp >= 125)
head(nba_filtered_stats)
```

```
## # A tibble: 6 × 31
```

| ## |   | player      | pos         | age         | tm          | g           | gs          | mp          | fg          | fga         | fgper…¹     | х3р         | х3ра        |
|----|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| ## |   | <chr></chr> | <chr></chr> | <dbl></dbl> | <chr></chr> | <dbl></dbl> |
| ## | 1 | Precious …  | С           | 22          | TOR         | 73          | 28          | 1725        | 7.7         | 17.5        | 0.439       | 1.6         | 4.5         |
| ## | 2 | Steven Ad   | С           | 28          | MEM         | 76          | 75          | 1999        | 5           | 9.2         | 0.547       | Θ           | 0           |
| ## | 3 | Bam Adeba   | С           | 24          | MIA         | 56          | 56          | 1825        | 11.1        | 20          | 0.557       | Θ           | 0.2         |
| ## | 4 | Santi Ald…  | PF          | 21          | MEM         | 32          | Θ           | 360         | 7           | 17.5        | 0.402       | 0.8         | 6.4         |
| ## | 5 | LaMarcus …  | С           | 36          | BRK         | 47          | 12          | 1050        | 11.6        | 21.1        | 0.55        | 0.6         | 2.1         |
| ## | 2 | Gravean A   | 50          | 26          | мті         | 66          | 61          | 1005        | 6 0         | 15 1        | 0 110       | 1 2         | 10 /        |

15 / 20

# Gaussian Mixture Models with mclust

Use the Mclust function to search over 1 to 9 clusters (*K* = G) and the different covariance constraints (i.e. models)

library(mclust)
nba\_mclust <- Mclust(dplyr::select(nba\_filtered\_stats, x3pa, trb))</pre>

We can use the summary() function to display the selection and resulting table of assignments:

```
summary(nba_mclust)
```

```
_____
## Gaussian finite mixture model fitted by EM algorithm
##
##
## Mclust VVI (diagonal, varying volume and shape) model with 3 components:
##
   log-likelihood n df BIC
##
                                   ICL
        -2459.03 483 14 -5004.581 -5141.138
##
##
## Clustering table:
    1 2 3
##
##
  52 276 155
```

# Display the BIC for each model and number of clusters



plot(nba\_mclust, what = 'classification')





Number of components

# How do the cluster assignments compare to the positions?

We can again compare the clustering assignments with player positions:

table("Clusters" = nba\_mclust\$classification, "Positions" = nba\_filtered\_stats\$pos)

| ## | Positions |    |      |    |       |    |       |    |       |    |       |       |
|----|-----------|----|------|----|-------|----|-------|----|-------|----|-------|-------|
| ## | Clusters  | С  | C-PF | ΡF | PF-SF | PG | PG-SG | SF | SF-SG | SG | SG-PG | SG-SF |
| ## | 1         | 43 | Θ    | 9  | Θ     | 0  | 0     | 0  | 0     | 0  | 0     | 0     |
| ## | 2         | 3  | Θ    | 28 | Θ     | 84 | 0     | 54 | 5     | 96 | 3     | 3     |
| ## | 3         | 39 | 2    | 56 | 1     | 8  | 1     | 38 | 0     | 9  | 0     | 1     |

# What about the cluster probabilities?

```
nba_player_probs <- nba_mclust$z</pre>
colnames(nba_player_probs) <-</pre>
  paste0('Cluster ', 1:3)
nba_player_probs <- nba_player_probs %>%
  as_tibble() %>%
  mutate(player =
           nba filtered stats$player) %>%
  pivot_longer(contains("Cluster"),
               names_to = "cluster",
               values_to = "prob")
nba_player_probs %>%
  ggplot(aes(prob)) +
  geom_histogram() +
  theme_bw() +
```

facet\_wrap(~ cluster, nrow = 2)



# Which players have the highest uncertainty?

```
nba_filtered_stats %>%
 mutate(cluster =
          nba_mclust$classification,
         uncertainty =
           nba_mclust$uncertainty) %>%
 group_by(cluster) %>%
 arrange(desc(uncertainty)) %>%
 slice(1:5) %>%
 ggplot(aes(y = uncertainty,
             x = reorder(player,
                         uncertainty))) +
 geom_point() +
 coord_flip() +
 theme_bw() +
 facet_wrap(~ cluster,
             scales = 'free_y', nrow = 3)
```



20 / 20