Model-based clustering
 Gaussian mixture models

June 15th, 2023

Previously...

- We explored the use of \mathbf{K}-means and hierarchical clustering for clustering
- These methods yield hard assignments, strictly assigning observations to only one cluster
- What about soft assignments? Allow for some uncertainty in the clustering results
- Welcome to the wonderful world of mixture models

Previously in kernel density estimation...

$$
\text { Kernel density estimate: } \hat{f}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K_{h}\left(x-x_{i}\right)
$$

- We have to use every observation when estimating the density for new points

- Instead we can make assumptions to "simplify" the problem

Mixture models

We assume the distribution $f(x)$ is a mixture of K component distributions:

$$
f(x)=\sum_{k=1}^{K} \pi_{k} f_{k}(x)
$$

- $\pi_{k}=$ mixing proportions (or weights), where $\pi_{k}>0$, and $\sum_{k} \pi_{k}=1$

This is a data generating process, meaning to generate a new point:

1. pick a distribution / component among our K options, by introducing a new variable:

- $z \sim \operatorname{Multinomial}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)$, i.e. categorical variable saying which group the new point is from

2. generate an observation with that distribution / component, i.e. $x \mid z \sim f_{z}$

So what do we use for each f_{k} ?

Gaussian mixture models (GMMs)

Assume a parametric mixture model, with parameters θ_{k} for the k th component

$$
f(x)=\sum_{k=1}^{K} \pi_{k} f_{k}\left(x ; \theta_{k}\right)
$$

Assume each component is Gaussian / Normal where for 1D case:

$$
f_{k}\left(x ; \theta_{k}\right)=N\left(x ; \mu_{k}, \sigma_{k}^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma_{k}^{2}}} \exp \left(-\frac{\left(x-\mu_{k}\right)^{2}}{2 \sigma_{k}^{2}}\right)
$$

We need to estimate each $\pi_{1}, \ldots, \pi_{k}, \mu_{1}, \ldots, \mu_{k}, \sigma_{1}, \ldots, \sigma_{k}$!

Let's pretend we only have one component...

If we have n observations from a single Normal distribution, we estimate the distribution parameters using the likelihood function, the probability / density of observing the data given the parameters

$$
\mathcal{L}\left(\mu, \sigma \mid x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n} \mid \mu, \sigma\right)=\prod_{i}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp -\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}
$$

We can compute the maximum likelihood estimates (MLEs) for μ and σ
You already know these values!

- $\hat{\mu}_{M L E}=\frac{1}{n} \sum_{i}^{n} x_{i}$, sample mean
- $\hat{\sigma}_{M L E}=\sqrt{\frac{1}{n} \sum_{i}^{n}\left(x_{i}-\mu\right)^{2}}$, sample standard deviation (plug in $\hat{\mu}_{M L E}$)

The problem with more than one component...

- We don't know which component an observation belongs to
- IF WE DID KNOW, then we could compute each component's MLEs as before
- But we don't know because z is a latent variable! So what about its distribution given the data?

$$
\begin{gathered}
P\left(z_{i}=k \mid x_{i}\right)=\frac{P\left(x_{i} \mid z_{i}=k\right) P\left(z_{i}=k\right)}{P\left(x_{i}\right)} \\
=\frac{\pi_{k} N\left(\mu_{k}, \sigma_{k}^{2}\right)}{\sum_{k=1}^{K} \pi_{k} N\left(\mu_{k}, \sigma_{k}\right)}
\end{gathered}
$$

- But we do NOT know these parameters!
- This leads to a very useful algorithm in statistics...

Expectation-maximization (EM) algorithm

We alternate between the following:

- pretending to know the probability each observation belongs to each group, to estimate the parameters of the components
- pretending to know the parameters of the components, to estimate the probability each observation belong to each group

Where have you seen this before? K-means algorithm!

1. Start with initial guesses about $\pi_{1}, \ldots, \pi_{k}, \mu_{1}, \ldots, \mu_{k}, \sigma_{1}, \ldots, \sigma_{k}$
2. Repeat until nothing changes:

- Expectation step: calculate $\hat{z}_{i k}=$ expected membership of observation i in cluster k
- Maximization step: update parameter estimates with weighted MLE using $\hat{z}_{i k}$

How does this relate back to clustering?

From the EM algorithm: $\hat{z}_{i k}$ is a soft membership of observation i in cluster k

- you can assign observation i to a cluster with the largest $\hat{z}_{i k}$
- measure cluster assignment uncertainty $=1-\max _{k} \hat{z}_{i k}$

Our parameters determine the type of clusters
In 1D we only have two options:

1. each cluster is assumed to have equal variance (spread): $\sigma_{1}^{2}=\sigma_{2}^{2}=\cdots=\sigma_{k}^{2}$
2. each cluster is allowed to have a different variance

But that is only 1D... what happens in multiple dimensions?

Multivariate GMMs

$$
\begin{gathered}
f(x)=\sum_{k=1}^{K} \pi_{k} f_{k}\left(x ; \theta_{k}\right) \\
\text { where } f_{k}\left(x ; \theta_{k}\right) \sim N\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{gathered}
$$

Each component is a multivariate normal distribution:

- $\boldsymbol{\mu}_{k}$ is a vector of means in p dimensions
- $\boldsymbol{\Sigma}_{k}$ is the $p \times p$ covariance matrix - describes the joint variability between pairs of variables

$$
\sum=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{1,2} & \cdots & \sigma_{1, p} \\
\sigma_{2,1} & \sigma_{2}^{2} & \cdots & \sigma_{2, p} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{p, 1} & \sigma_{p, 2}^{2} & \cdots & \sigma_{p}^{2}
\end{array}\right]
$$

Covariance constraints

$$
\sum=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{1,2} & \cdots & \sigma_{1, p} \\
\sigma_{2,1} & \sigma_{2}^{2} & \cdots & \sigma_{2, p} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{p, 1} & \sigma_{p, 2}^{2} & \cdots & \sigma_{p}^{2}
\end{array}\right]
$$

As we increase the number of dimensions, model fitting and estimation becomes increasingly difficult
We can use constraints on multiple aspects of the k covariance matrices:

- volume: size of the clusters, i.e., number of observations,
- shape: direction of variance, i.e. which variables display more variance
- orientation: aligned with axes (low covariance) versus tilted (due to relationships between variables)

- Control volume, shape, orientation
- E means equal and \mathbf{V} means variable ($V V V$ is the most flexible, but has the most parameters)
- Two II is spherical, one I is diagonal, and the remaining are general

So many options! How do we know what to do?

Bayesian information criterion (BIC)

This is a statistical model

$$
\begin{gathered}
\qquad f(x)=\sum_{k=1}^{K} \pi_{k} f_{k}\left(x ; \theta_{k}\right) \\
\text { where } f_{k}\left(x ; \theta_{k}\right) \sim N\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{gathered}
$$

Meaning we can use a model selection procedure for determining which best characterizes the data Specifically - we will use a penalized likelihood measure

$$
B I C=2 \log \mathcal{L}-m \log n
$$

- $\log \mathcal{L}$ is the \log-likelihood of the considered model
- with m parameters ($V V V$ has the most parameters) and n observations
- penalizes large models with many clusters without constraints
- we can use BIC to choose the covariance constraints AND number of clusters K !

The above BIC is really the -BIC of what you typically see, this sign flip is just for ease

Mixture model for NBA players... New dataset!

Created dataset of NBA player statistics per 100 possessions using ballr

```
library(tidyverse)
nba_pos_stats <-
    read_csv("https://shorturl.at/mFGY2")
# Find rows for players indicating a full season worth of stats
tot_players <- nba_pos_stats %>% filter(tm == "TOT")
# Stack this dataset with players that played on just one team
nba_player_stats <- nba_pos_stats %>%
    filter(!(player %in% tot_players$player)) %>%
    bind_rows(tot_players)
# Filter to only players with at least }125\mathrm{ minutes played
nba_filtered_stats <- nba_player_stats %>% filter(mp >= 125)
head(nba_filtered_stats)
```

\#\# \# A tibble: 6×31

\#\#	player	pos	age	tm	g	gs	mp	fg	fga	fgper... ${ }^{1}$	x3p	x3pa
\#\#	<chr>	<chr>	<dbl>	<chr>	<dbl>							
\#\# 1	Precious ...	C	22	TOR	73	28	1725	7.7	17.5	0.439	1.6	4.5
\#\# 2	Steven Ad...	C	28	MEM	76	75	1999	5	9.2	0.547	0	0
\#\# 3	Bam Adeba...	C	24	MIA	56	56	1825	11.1	20	0.557	0	0.2
\#\# 4	Santi Ald...	PF	21	MEM	32	0	360	7	17.5	0.402	0.8	6.4
\#\# 5	LaMarcus ...	C	36	BRK	47	12	1050	11.6	21.1	0.55	0.6	2.1

Gaussian Mixture Models with mclust

Use the Mclust function to search over 1 to 9 clusters ($K=\mathrm{G}$) and the different covariance constraints (i.e. models)

```
library(mclust)
nba_mclust <- Mclust(dplyr::select(nba_filtered_stats, x3pa, trb))
```

We can use the summary () function to display the selection and resulting table of assignments:

```
summary(nba_mclust)
## ----------------------------------------------------------
## Gaussian finite mixture model fitted by EM algorithm
##
##
## Mclust VVI (diagonal, varying volume and shape) model with 3 components:
##
## log-likelihood n df BIC ICL
## -2459.03 483 14 -5004.581 -5141.138
##
## Clustering table:
## 1 2 3
## 52 276
```


Display the BIC for each model and number of clusters

```
plot(nba_mclust, what = 'BIC',
    legendArgs = list(x = "bottomright",
                                    ncol = 4))
```


How do the cluster assignments compare to the positions?

We can again compare the clustering assignments with player positions:

```
table("Clusters" = nba_mclust$classification, "Positions" = nba_filtered_stats$pos)
```

Positions												
\#\#	Clusters	C	C-PF	PF	PF-SF	PG	PG-SG	SF	SF-SG	SG	SG-PG	SG-SF
\#\#	1	43	\bigcirc	9	\bigcirc	0	0	0	0	0	0	0
\# \#	2	3	0	28	\bigcirc	84	0	54	5	96	3	3
\#\#	3	39	2	56	1	8	1	38	\bigcirc	9	\bigcirc	1

What about the cluster probabilities?

```
nba_player_probs <- nba_mclust$z
colnames(nba_player_probs) <-
    paste0('Cluster ', 1:3)
nba_player_probs <- nba_player_probs %>%
    as_tibble() %>%
    mutate(player =
        nba_filtered_stats$player) %>%
    pivot_longer(contains("Cluster"),
        names_to = "cluster",
        values_to = "prob")
nba_player_probs %>%
    ggplot(aes(prob)) +
    geom_histogram() +
    theme_bw() +
    facet_wrap(~ cluster, nrow = 2)
```


Which players have the highest uncertainty?

```
nba_filtered_stats %>%
    mutate(cluster =
                            nba_mclust$classification,
            uncertainty =
            nba_mclust$uncertainty) %>%
    group_by(cluster) %>%
    arrange(desc(uncertainty)) %>%
    slice(1:5) %>%
    ggplot(aes(y = uncertainty,
            x = reorder(player
                            uncertainty))) +
    geom_point() +
    coord_flip() +
    theme_bw() +
    facet_wrap(~ cluster,
                        scales = 'free_y', nrow = 3)
```


