
Model-based clusteringModel-based clustering
Gaussian mixture modelsGaussian mixture models

June 15th, 2023June 15th, 2023

1 / 201 / 20

Previously...
We explored the use of K-means and hierarchical clustering for clustering

These methods yield hard assignments, strictly assigning observations to only one cluster

What about soft assignments? Allow for some uncertainty in the clustering results

Welcome to the wonderful world of mixture models

2 / 20

Previously in kernel density estimation...

We have to use every observation when estimating the density for new points

Instead we can make assumptions to "simplify" the problem

Kernel density estimate: f̂ (x) =
n

∑
i=1

Kh(x − xi)
1
n

1
h

3 / 20

Mixture models
We assume the distribution is a mixture of component distributions:

 mixing proportions (or weights), where , and

This is a data generating process, meaning to generate a new point:

1. pick a distribution / component among our options, by introducing a new variable:

, i.e. categorical variable saying which group the new point is from

2. generate an observation with that distribution / component, i.e.

So what do we use for each ?

f(x) K

f(x) =
K

∑
k=1

πkfk(x)

πk = πk > 0 ∑k πk = 1

K

z ∼ Multinomial(π1, π2, … , πk)

x|z ∼ fz

fk

4 / 20

Gaussian mixture models (GMMs)
Assume a parametric mixture model, with parameters for the th component

Assume each component is Gaussian / Normal where for 1D case:

We need to estimate each , , !

θk k

f(x) =
K

∑
k=1

πkfk(x; θk)

fk(x; θk) = N(x; μk, σ2
k
) = exp(−)

1

√2πσ2
k

(x − μk)2

2σ2
k

π1, … , πk μ1, … , μk σ1, … , σk

5 / 20

https://en.wikipedia.org/wiki/Normal_distribution

Let's pretend we only have one component...
If we have observations from a single Normal distribution, we estimate the distribution parameters using
the likelihood function, the probability / density of observing the data given the parameters

We can compute the maximum likelihood estimates (MLEs) for and

You already know these values!

, sample mean

, sample standard deviation (plug in)

n

L(μ, σ|x1, … , xn) = f(x1, … , xn|μ, σ) =
n

∏
i

exp −
1

√2πσ2

(xi − μ)2

2σ2

μ σ

μ̂MLE = ∑n

i xi
1
n

σ̂MLE =√ ∑n

i (xi − μ)21
n

μ̂MLE

6 / 20

We don't know which component an
observation belongs to

IF WE DID KNOW, then we could compute
each component's MLEs as before

But we don't know because is a latent
variable! So what about its distribution given
the data?

But we do NOT know these parameters!

This leads to a very useful algorithm in
statistics...

The problem with more than one component...

z

P(zi = k|xi) =
P(xi|zi = k)P(zi = k)

P(xi)

=
πkN (μk, σ2

k
)

∑K

k=1 πkN (μk, σk)

7 / 20

Expectation-maximization (EM) algorithm
We alternate between the following:

pretending to know the probability each observation belongs to each group, to estimate the parameters of
the components

pretending to know the parameters of the components, to estimate the probability each observation
belong to each group

Where have you seen this before? K-means algorithm!

1. Start with initial guesses about , ,

2. Repeat until nothing changes:

Expectation step: calculate = expected membership of observation in cluster

Maximization step: update parameter estimates with weighted MLE using

π1, … , πk μ1, … , μk σ1, … , σk

ẑ ik i k

ẑ ik

8 / 20

How does this relate back to clustering?
From the EM algorithm: is a soft membership of observation in cluster

you can assign observation to a cluster with the largest

measure cluster assignment uncertainty

Our parameters determine the type of clusters

In 1D we only have two options:

1. each cluster is assumed to have equal variance (spread):

2. each cluster is allowed to have a different variance

But that is only 1D... what happens in multiple dimensions?

ẑ ik i k

i ẑ ik

= 1 − maxkẑ ik

σ2
1 = σ2

2 = ⋯ = σ2
k

9 / 20

Multivariate GMMs

Each component is a multivariate normal distribution:

 is a vector of means in dimensions

 is the covariance matrix - describes the joint variability between pairs of variables

f(x) =
K

∑
k=1

πkfk(x; θk)

where fk(x; θk) ∼ N(μk, Σk)

μk p

Σk p × p

∑ =

⎡
⎢⎢⎢⎢⎢⎢
⎣

σ2
1 σ1,2 ⋯ σ1,p

σ2,1 σ2
2 ⋯ σ2,p

⋮ ⋮ ⋱ ⋮

σp,1 σ2
p,2 ⋯ σ2

p

⎤
⎥⎥⎥⎥⎥⎥
⎦

10 / 20

Covariance constraints

As we increase the number of dimensions, model fitting and estimation becomes increasingly difficult

We can use constraints on multiple aspects of the covariance matrices:

volume: size of the clusters, i.e., number of observations,

shape: direction of variance, i.e. which variables display more variance

orientation: aligned with axes (low covariance) versus tilted (due to relationships between variables)

∑ =

⎡
⎢⎢⎢⎢⎢⎢
⎣

σ2
1 σ1,2 ⋯ σ1,p

σ2,1 σ2
2 ⋯ σ2,p

⋮ ⋮ ⋱ ⋮

σp,1 σ2
p,2 ⋯ σ2

p

⎤
⎥⎥⎥⎥⎥⎥
⎦

k

11 / 20

Control volume, shape, orientation

E means equal and V means variable (VVV is the most flexible, but has the most parameters)

Two II is spherical, one I is diagonal, and the remaining are general
12 / 20

So many options! How do we know what to do?

13 / 20

Bayesian information criterion (BIC)
This is a statistical model

Meaning we can use a model selection procedure for determining which best characterizes the data

Specifically - we will use a penalized likelihood measure

 is the log-likelihood of the considered model

with parameters (VVV has the most parameters) and observations

penalizes large models with many clusters without constraints

we can use BIC to choose the covariance constraints AND number of clusters !

The above BIC is really the -BIC of what you typically see, this sign flip is just for ease

f(x) =
K

∑
k=1

πkfk(x; θk)

where fk(x; θk) ∼ N(μk, Σk)

BIC = 2 logL − m log n

logL

m n

K

14 / 20

Mixture model for NBA players... New dataset!

Created dataset of NBA player statistics per 100 possessions using ballr

library(tidyverse)

nba_pos_stats <-

 read_csv("https://shorturl.at/mFGY2")

Find rows for players indicating a full season worth of stats

tot_players <- nba_pos_stats %>% filter(tm == "TOT")

Stack this dataset with players that played on just one team

nba_player_stats <- nba_pos_stats %>%

 filter(!(player %in% tot_players$player)) %>%

 bind_rows(tot_players)

Filter to only players with at least 125 minutes played

nba_filtered_stats <- nba_player_stats %>% filter(mp >= 125)

head(nba_filtered_stats)

A tibble: 6 × 31

player pos age tm g gs mp fg fga fgper…¹ x3p x3pa

<chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Precious … C 22 TOR 73 28 1725 7.7 17.5 0.439 1.6 4.5

2 Steven Ad… C 28 MEM 76 75 1999 5 9.2 0.547 0 0

3 Bam Adeba… C 24 MIA 56 56 1825 11.1 20 0.557 0 0.2

4 Santi Ald… PF 21 MEM 32 0 360 7 17.5 0.402 0.8 6.4

5 LaMarcus … C 36 BRK 47 12 1050 11.6 21.1 0.55 0.6 2.1

6 Grayson A SG 26 MIL 66 61 1805 6 8 15 1 0 448 4 2 10 4

15 / 20

https://cran.r-project.org/web/packages/ballr/vignettes/use-ballr.html

Gaussian Mixture Models with mclust
Use the Mclust function to search over 1 to 9 clusters (K = G) and the different covariance constraints (i.e.
models)

library(mclust)

nba_mclust <- Mclust(dplyr::select(nba_filtered_stats, x3pa, trb))

We can use the summary() function to display the selection and resulting table of assignments:

summary(nba_mclust)

--

Gaussian finite mixture model fitted by EM algorithm

--

Mclust VVI (diagonal, varying volume and shape) model with 3 components:

log-likelihood n df BIC ICL

-2459.03 483 14 -5004.581 -5141.138

Clustering table:

1 2 3

52 276 155
16 / 20

https://cran.r-project.org/web/packages/mclust/vignettes/mclust.html

plot(nba_mclust, what = 'BIC',

 legendArgs = list(x = "bottomright",

 ncol = 4))

plot(nba_mclust, what = 'classification')

Display the BIC for each model and number of clusters

17 / 20

How do the cluster assignments compare to the positions?
We can again compare the clustering assignments with player positions:

table("Clusters" = nba_mclust$classification, "Positions" = nba_filtered_stats$pos)

Positions

Clusters C C-PF PF PF-SF PG PG-SG SF SF-SG SG SG-PG SG-SF

1 43 0 9 0 0 0 0 0 0 0 0

2 3 0 28 0 84 0 54 5 96 3 3

3 39 2 56 1 8 1 38 0 9 0 1

18 / 20

nba_player_probs <- nba_mclust$z

colnames(nba_player_probs) <-

 paste0('Cluster ', 1:3)

nba_player_probs <- nba_player_probs %>%

 as_tibble() %>%

 mutate(player =

 nba_filtered_stats$player) %>%

 pivot_longer(contains("Cluster"),

 names_to = "cluster",

 values_to = "prob")

nba_player_probs %>%

 ggplot(aes(prob)) +

 geom_histogram() +

 theme_bw() +

 facet_wrap(~ cluster, nrow = 2)

What about the cluster probabilities?

19 / 20

nba_filtered_stats %>%

 mutate(cluster =

 nba_mclust$classification,

 uncertainty =

 nba_mclust$uncertainty) %>%

 group_by(cluster) %>%

 arrange(desc(uncertainty)) %>%

 slice(1:5) %>%

 ggplot(aes(y = uncertainty,

 x = reorder(player,

 uncertainty))) +

 geom_point() +

 coord_flip() +

 theme_bw() +

 facet_wrap(~ cluster,

 scales = 'free_y', nrow = 3)

Which players have the highest uncertainty?

20 / 20

