
Data VisualizationData Visualization
Density estimationDensity estimation

June 12th, 2023June 12th, 2023

1 / 221 / 22

New dataset - Stephen Curry's shots
Created dataset of shot attempts by the Stephen Curry in 2021-2022 season using nbastatR

library(tidyverse)
curry_shots <-
 read_csv("https://shorturl.at/xFI18")
head(curry_shots)

A tibble: 6 × 8
shot_x shot_y shot_distance is_shot_made period fg_type shot_…¹ shot_…²
<dbl> <dbl> <dbl> <lgl> <dbl> <chr> <chr> <chr>
1 -109 260 28 FALSE 1 3PT Field Goal Above … Pullup…
2 48 257 26 FALSE 1 3PT Field Goal Above … Runnin…
3 -165 189 25 TRUE 1 3PT Field Goal Above … Jump S…
4 -13 12 1 FALSE 1 2PT Field Goal Restri… Drivin…
5 -15 22 2 FALSE 1 2PT Field Goal Restri… Layup …
6 18 16 2 FALSE 1 2PT Field Goal Restri… Drivin…
… with abbreviated variable names ¹​shot_zone, ²​shot_type

each row / observation is a shot attempt by Curry in the 2021 season
Categorical / qualitative variables: is_shot_made, fg_type, shot_zone, shot_type
Continuous / quantitative variables: shot_x, shot_y, shot_distance

2 / 22

http://asbcllc.com/nbastatR/

fd_bw <- 2 * IQR(curry_shots$shot_distance) /
curry_shots %>%
 ggplot(aes(x = shot_distance)) +
 geom_histogram(binwidth = fd_bw) +
 theme_bw()

Split observed data into bins

Count number of observations in each bin

Need to choose the number of bins, adjust with:

bins - number of bins (default is 30)

binwidth - literally the width of bins
(overrides bins), various rules of thumb

e.g., see fd_bw for Freedman–Diaconis rule

breaks - vector of bin boundaries (overrides
both bins and binwidth)

Back to histograms...

3 / 22

https://en.wikipedia.org/wiki/Histogram
https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
https://ggplot2.tidyverse.org/reference/geom_histogram.html

Small binwidth "undersmooth" / spiky

curry_shots %>%
 ggplot(aes(x = shot_distance)) +
 geom_histogram(binwidth = 1) +
 theme_bw()

Large binwidth "oversmooth" / flat

curry_shots %>%
 ggplot(aes(x = shot_distance)) +
 geom_histogram(binwidth = 25) +
 theme_bw()

Adjusting the bin width

Try several approaches, the R / ggplot2 default is NOT guaranteed to be an optimal choice

→ →

4 / 22

By default the bins are centered on the integers...

left-closed, right-open intervals
starting at -0.5 to 0.5, 0.5 to 1.5, ...

curry_shots %>%
 ggplot(aes(x = shot_distance)) +
 geom_histogram(binwidth = 1) +
 theme_bw()

Specify center of one bin (e.g. 0.5)

Reminder to use closed = "left"...

curry_shots %>%
 ggplot(aes(x = shot_distance)) +
 geom_histogram(binwidth = 1, center = 0.5,
 closed = "left") +
 theme_bw()

A subtle point about the histogram code...

5 / 22

How do histograms relate to the PDF and CDF?

Remember: we use the probability density function (PDF) to provide a relative likelihood

PDF is the derivative of the cumulative distribution function (CDF)

Histograms approximate the PDF with bins, and points are equally likely within a bin

What can say about the relative likelihood of data we have not observed?

we want non-zero density between our observations, e.g., just beyond 20 feet
6 / 22

Kernel density estimation
Goal: estimate the PDF for all possible values (assuming it is continuous / smooth)

 sample size, new point to estimate (does NOT have to be in dataset!)

 bandwidth, analogous to histogram bin width, ensures integrates to 1

 th observation in dataset

 is the Kernel function, creates weight given distance of th observation from new point

as then , i.e. further apart th row is from , smaller the weight

as bandwidth weights are more evenly spread out (as more concentrated around)

typically use Gaussian / Normal kernel:

 is large when is close to

f(x)

Kernel density estimate: f̂ (x) =
n

∑
i=1

Kh(x − xi)
1

n

1

h

n = x = f(x)

h = f̂ (x)

xi = i

Kh(x − xi) i

|x − xi| → ∞ Kh(x − xi) → 0 i x

h ↑ h ↓ x

∝ e−(x−xi)
2/2h2

Kh(x − xi) xi x

7 / 22

https://en.wikipedia.org/wiki/Normal_distribution

Wikipedia example

8 / 22

https://en.wikipedia.org/wiki/Kernel_density_estimation

We make kernel density estimates with
geom_density()

curry_shots %>%
 ggplot(aes(x = shot_distance)) +
 geom_density() +
 geom_rug(alpha = 0.3) +
 theme_bw()

Pros:

Displays full shape of distribution
Can easily layer
Add categorical variable with color

Cons:

Need to pick bandwidth and kernel...

How do we compute and display the density estimate?

9 / 22

https://ggplot2.tidyverse.org/reference/geom_density.html

curry_shots %>%
 ggplot(aes(x = shot_distance)) +
 geom_density(adjust = 0.5) +
 geom_rug(alpha = 0.3) + theme_bw()

curry_shots %>%
 ggplot(aes(x = shot_distance)) +
 geom_density(adjust = 2) +
 geom_rug(alpha = 0.3) + theme_bw()

What about the bandwidth? See Chapter 14 for more...
Use Gaussian reference rule (rule-of-thumb) , where is the observed standard deviation

Modify the bandwidth using the adjust argument - value to multiply default bandwidth by

≈ 1.06 ⋅ σ ⋅ n−1/5 σ

10 / 22

https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Use density curves and ECDFs together

11 / 22

Code interlude: easy way to arrange multiple figures
Use the new patchwork package to easily arrange your plots (see also cowplot)

library(patchwork)
curry_shot_dens <- curry_shots %>%
 ggplot(aes(x = shot_distance)) +
 geom_density() +
 geom_rug(alpha = 0.3) +
 theme_bw() +
 labs(x = "Shot distance (in feet)",
 y = "Number of shot attempts")
curry_shot_ecdf <- curry_shots %>%
 ggplot(aes(x = shot_distance)) +
 stat_ecdf() +
 geom_rug(alpha = 0.3) +
 theme_bw() +
 labs(x = "Shot distance (in feet)",
 y = "Proportion of Curry shot attempts")
curry_shot_dens + curry_shot_ecdf

12 / 22

https://patchwork.data-imaginist.com/index.html
https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html

Use density curves and ECDFs together

13 / 22

Another code interlude: collect the legends

curry_shot_dens_made <- curry_shots %>%
 ggplot(aes(x = shot_distance,
 color = is_shot_made)) +
 geom_density() +
 geom_rug(alpha = 0.3) +
 theme_bw() +
 labs(x = "Shot distance (in feet)",
 y = "Number of shot attempts")
curry_shot_ecdf_made <- curry_shots %>%
 ggplot(aes(x = shot_distance,
 color = is_shot_made)) +
 stat_ecdf() +
 geom_rug(alpha = 0.3) +
 theme_bw() +
 labs(x = "Shot distance (in feet)",
 y = "Proportion of Curry shot attempts")
curry_shot_dens_made + curry_shot_ecdf_made + plot_layout(guides = 'collect')

14 / 22

https://patchwork.data-imaginist.com/articles/guides/layout.html#controlling-guides

Check out the ggridges package for a variety
of customization options

library(ggridges)
curry_shots %>%
 ggplot(aes(x = shot_distance,
 y = shot_type)) +
 geom_density_ridges(rel_min_height = 0.01)
 theme_bw()

Useful to display conditional distributions
across many levels

Alternative to violins - ridge plots

15 / 22

https://cran.r-project.org/web/packages/ggridges/vignettes/introduction.html

curry_shots %>%
Modify the shot coordinates

 mutate(shot_x = -shot_x / 10,
 shot_y = shot_y / 10) %>%
 ggplot(aes(x = shot_x, y = shot_y)) +
 geom_point(alpha = 0.3) +
 theme_bw()

Adjust transparency with alpha for
overlapping points

What about for 2D? (two continuous variables)
We can visualize all of the shot locations: (shot_x, shot_y)

16 / 22

We make 2D KDE contour plots using
geom_density2d()

curry_shots %>%
Modify the shot coordinates

 mutate(shot_x = -shot_x / 10,
 shot_y = shot_y / 10) %>%
 filter(shot_y <= 30) %>%
 ggplot(aes(x = shot_x, y = shot_y)) +
 geom_point(alpha = 0.3) +
 geom_density2d() +
 theme_bw() + theme(legend.position = "botto
 coord_fixed()

Extend KDE for joint density estimates in 2D
(see section 14.4.2 for details)

coord_fixed() forced a fixed ratio

Create contours of 2D kernel density estimate (KDE)

17 / 22

https://ggplot2.tidyverse.org/reference/geom_density_2d.html
https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

We make 2D KDE contour plots using
geom_density2d()

curry_shots %>%
Modify the shot coordinates

 mutate(shot_x = -shot_x / 10,
 shot_y = shot_y / 10) %>%

Remove the outlier shots:

 filter(shot_y <= 30) %>%
 ggplot(aes(x = shot_x, y = shot_y)) +
 geom_point(alpha = 0.3) +
 geom_density2d(adjust = 0.1) +
 theme_bw() +
 theme(legend.position = "bottom") +
 coord_fixed()

Can use adjust to modify the multivariate
bandwidth

Create contours of 2D kernel density estimate (KDE)

18 / 22

https://ggplot2.tidyverse.org/reference/geom_density_2d.html

We make 2D KDE heatmap plots using
stat_density_2d() and the .. or
after_stat() function

curry_shots %>%
 mutate(shot_x = -shot_x / 10,
 shot_y = shot_y / 10) %>%
 filter(shot_y <= 30) %>%
 ggplot(aes(x = shot_x, y = shot_y)) +
 stat_density2d(h = 0.5, bins = 60,
 aes(fill = after_stat(level)
 geom = "polygon") +
 scale_fill_gradient(low = "darkblue",
 high = "darkorange") +
 theme_bw() + theme(legend.position = "botto
 coord_fixed()

Multivariate density estimation can be difficult

Contours are difficult... let's make a heatmap instead

19 / 22

https://ggplot2.tidyverse.org/reference/geom_density_2d.html
https://ggplot2.tidyverse.org/reference/aes_eval.html

We make 2D KDE heatmap plots using
stat_density_2d() and the .. or
after_stat() function

curry_shots %>%
 mutate(shot_x = -shot_x / 10,
 shot_y = shot_y / 10) %>%
 filter(shot_y <= 30) %>%
 ggplot(aes(x = shot_x, y = shot_y)) +
 stat_density2d(h = 0.5, bins = 60,
 contour = FALSE,
 aes(fill = after_stat(densit
 geom = "raster") +
 scale_fill_gradient(low = "darkblue",
 high = "darkorange") +
 theme_bw() + theme(legend.position = "botto
 coord_fixed()

Turn off contours and use tiles instead

20 / 22

https://ggplot2.tidyverse.org/reference/geom_density_2d.html
https://ggplot2.tidyverse.org/reference/aes_eval.html

We make hexagonal heatmap plots using
geom_hex()

Need to have the hexbin package installed

curry_shots %>%
 mutate(shot_x = -shot_x / 10,
 shot_y = shot_y / 10) %>%
 filter(shot_y <= 30) %>%
 ggplot(aes(x = shot_x, y = shot_y)) +
 geom_hex(binwidth = c(1, 1)) +
 scale_fill_gradient(low = "darkblue",
 high = "darkorange") +
 theme_bw() + theme(legend.position = "botto
 coord_fixed()

Can specify binwidth in both directions
Avoids limitations from smoothing

Best alternative? Hexagonal binning

21 / 22

https://ggplot2.tidyverse.org/reference/geom_hex.html
https://cran.r-project.org/web/packages/hexbin/index.html

curry_shots %>%
 mutate(shot_x = -shot_x / 10,
 shot_y = shot_y / 10) %>%
 filter(shot_y <= 30) %>%
 ggplot(aes(x = shot_x, y = shot_y,
 z = is_shot_made,
 group = -1)) +
 stat_summary_hex(binwidth = c(2, 2),
 color = "black",
 fun = mean) +
 scale_fill_gradient(low = "darkblue",
 high = "darkorange") +
 theme_bw() + theme(legend.position = "botto
 coord_fixed()

What about his shooting efficiency?
Can compute a function of another variable inside hexagons with stat_summary_hex()

Check out BallR for code examples to make shot charts and drawing courts

22 / 22

https://ggplot2.tidyverse.org/reference/stat_summary_2d.html
https://github.com/toddwschneider/ballr

