Data Visualization

Visualizing 2D categorical and continuous by categorical

June 9th, 2023

Revisiting MVP Shohei Ohtani's batted balls in 2021

Created dataset of batted balls by the American League MVP Shohei Ohtani in 2021 season using baseballr

```
library(tidyverse)
ohtani batted_balls <- read_csv("https://shorturl.at/mnwL1")</pre>
head(ohtani_batted_balls)
## # A tibble: 6 × 7
## pitch type batted ball type hit x hit y exit velocity launch angle outcome
                       <dbl> <dbl>
## <chr>
             <chr>
                                             <dbl>
                                                        <dbl> <chr>
## 1 FC
       line drive 89.7 144.
                                             113.
                                                          20 home run
## 2 CH fly ball
                      3.35 83.9
                                            83.9
                                                          55 field out
## 3 CH fly ball
                     -65.6 126.
                                                          38 field out
                                            102.
## 4 CU
             ground ball 39.2 50.4
                                            82.5
                                                           8 field out
             fly ball
## 5 FC
                      -37.6 138.
                                             101.
                                                          23 field out
## 6 KC
                           -51.9 41.6
                                                          65 field out
             popup
                                             84
```

- each row / observation is a batted ball from Ohtani's 2021 season
- Categorical / qualitative variables: pitch_type, batted_ball_type, outcome
- Continuous / quantitative variables: hit_x, hit_y, exit_velocity, launch_angle

First - more fun with forcats

Variables of interest: pitch_type and batted_ball_type - but how many levels does pitch_type have?

```
##
## CH CU FC FF FS KC SI SL
## 62 37 30 87 8 11 57 62
```

We can manually fct_recode pitch_type (see Chapter 15 of R for Data Science for more on factors)

Question: Are all pitch types equally likely to occur?

Inference for categorical data

The main test used for categorical data is the **chi-square test**:

• Null hypothesis: $H_0: p_1=p_2=\cdots=p_K$ and we compute the **test statistic**:

$$\chi^2 = \sum_{j=1}^K rac{(O_j - E_j)^2}{E_j}$$

- O_i : observed counts in category j
- E_j : expected counts under H_0 (i.e., $rac{n}{K}$ or each category is equally likely to occur)

chisq.test(table(ohtani_batted_balls\$pitch_type))

```
##
## Chi-squared test for given probabilities
##
## data: table(ohtani_batted_balls$pitch_type)
## X-squared = 61.831, df = 2, p-value = 3.747e-14
```

Statistical inference in general

Computing p-values works like this:

- Choose a test statistic.
- Compute the test statistic in your dataset.
- Is test statistic "unusual" compared to what I would expect under H_0 ?
- Compare p-value to **target error rate** α (typically referred to as target level α)
- Typically choose lpha=0.05

2D Categorical visualization (== more bar charts!)

Stacked: a bar chart of *spine* charts

Side-by-Side: a bar chart of bar charts

Which do you prefer?

- Stacked bar charts emphasize **marginal** distribution of x variable,
 - e.g. P (batted_ball_type = fly_ball)
- Side-by-side bar charts are useful to show the **conditional** distribution of fill variable given x,
 - e.g. P (pitch_type = Fastball | batted_ball_type = fly_ball)

Contingency tables

Can provide table() with more than one variable

```
table("Pitch type" = ohtani_batted_balls$pitch_type,
       "Batted ball type" = ohtani_batted_balls$batted_ball_type)
##
                  Batted ball type
                   fly_ball ground_ball line_drive popup
## Pitch type
    Changeup
##
                         27
                                      19
                                                 11
    Breaking ball
##
                         44
                                      38
                                                 22
                                                        6
##
    Fastball
                         52
                                      84
                                                 40
                                                        6
```

Easily compute proportions():

```
proportions(table(ohtani_batted_balls$pitch_type, ohtani_batted_balls$batted_ball_type))
```

```
##
## fly_ball ground_ball line_drive popup
## Changeup 0.07627119 0.05367232 0.03107345 0.01412429
## Breaking ball 0.12429379 0.10734463 0.06214689 0.01694915
## Fastball 0.14689266 0.23728814 0.11299435 0.01694915
```

Review of joint, marginal, and conditional probabilities

Joint distribution: frequency of intersection, P(X=x,Y=y)

```
## fly_ball ground_ball line_drive popup
## Changeup 0.07627119 0.05367232 0.03107345 0.01412429
## Breaking ball 0.12429379 0.10734463 0.06214689 0.01694915
## Fastball 0.14689266 0.23728814 0.11299435 0.01694915
```

Marginal distribution: row / column sums, e.g. $P(X = \text{popup}) = \sum_{y \in \text{pitch types}} P(X = \text{popup}, Y = y)$

Conditional distribution: probability event X given second event Y,

• e.g.
$$P(X = \text{popup}|Y = \text{Fastball}) = \frac{P(X = \text{popup}, Y = \text{Fastball})}{P(Y = \text{Fastball})}$$

BONUS: pivot_wider example

Manually construct this table for practice...

pitch_type	fly_ball	ground_ball	line_drive	popup
Changeup	0.07627119	0.05367232	0.03107345	0.01412429
Breaking ball	0.12429379	0.10734463	0.06214689	0.01694915
Fastball	0.14689266	0.23728814	0.11299435	0.01694915

Inference for 2D categorical data

We AGAIN use the **chi-square test**:

- Null hypothesis: H_0 : Variables A and B are independent,
 - e.g., batted_ball_type and pitch_type are independent of each other, no relationship
- And now we compute the **test statistic** as:

$$\chi^2 = \sum_{i}^{k_1} \sum_{j}^{k_2} rac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- O_{ij} : observed counts in contingency table j
- E_{ij} : expected counts under H_0 where **under the null**:

$$egin{aligned} E_{ij} &= n \cdot P(A = a_i, B = b_j) \ &= n \cdot P(A = a_i) P(B = b_j) \ &= n \cdot \left(rac{n_{i \cdot}}{n}
ight) \left(rac{n_{\cdot j}}{n}
ight) \end{aligned}$$

Inference for 2D categorical data

We AGAIN use the **chi-square test**:

- Null hypothesis: H_0 : Variables A and B are independent,
 - e.g., batted_ball_type and pitch_type are independent of each other, no relationship
- And now we compute the **test statistic** as:

$$\chi^2 = \sum_{i}^{k_1} \sum_{j}^{k_2} rac{(O_{ij} - E_{ij})^2}{E_{ij}}.$$

chisq.test(table(ohtani_batted_balls\$pitch_type, ohtani_batted_balls\$batted_ball_type))

```
##
## Pearson's Chi-squared test
##
## data: table(ohtani_batted_balls$pitch_type, ohtani_batted_balls$batted_ball_type)
## X-squared = 10.928, df = 6, p-value = 0.09062
```

Can we visualize independence?

Two variables are **independent** if knowing the level of one tells us nothing about the other

$$ullet$$
 i.e. $P(X=x|Y=y)=P(X=x)$, and that $P(X=x,Y=y)=P(X=x) imes P(Y=y)$

Create a mosaic plot using base R

- spine chart of spine charts
- height

 conditional distribution of batted_ball_type | pitch_type
- area \propto joint distribution

ggmosaic has issues...

Relationship between batted ball and pitch type?

Shade by *Pearson residuals*

• The **test statistic** is:

$$\chi^2 = \sum_{i}^{k_1} \sum_{j}^{k_2} rac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

• Define the *Pearson residuals* as:

$$r_{ij} = rac{O_{ij} - E_{ij}}{\sqrt{E_{ij}}}$$

- Sidenote: In general, Pearson residuals are $\frac{\text{residuals}}{\sqrt{\text{variance}}}$
- $r_{ij}pprox 0 o$ observed counts are close to expected counts
- $|r_{ij}|>2 o$ "significant" at level lpha=0.05.
- ullet Very positive $r_{ij}
 ightarrow$ more than expected, while very negative $r_{ij}
 ightarrow$ fewer than expected
- Mosaic plots: Color by Pearson residuals to tell us which combos are much bigger/smaller than expected.

Shade by *Pearson residuals*

Relationship between batted ball and pitch type?

Continuous by categorical: side-by-side and color

What about for histograms?

We can always facet instead...

```
ohtani_batted_balls %>%
  ggplot(aes(x = exit_velocity)) +
  geom_histogram() +
  theme_bw() +
  facet_wrap(~ pitch_type, ncol = 2)
```



```
ohtani_batted_balls %>%
  ggplot(aes(x = exit_velocity)) +
  geom_histogram() +
  theme_bw() +
  facet_grid(pitch_type ~., margins = TRUE)
```


Facets make it easy to move beyond 2D

2D Continuous Relationships --> Scatterplot

• We make a **scatterplot** with geom_point()

Two continuous, one categorical...

The possibilities are endless!

