
Data Engineering - Lecture 6

A practical approach to SQL - Part 2

Shamindra Shrotriya (CMU)

So where were we?

Data-driven workflows adopt an interactive pipeline

Takeaway: being able to efficiently extract SQL data is vital for success

We spend most of our time here in this course,
e.g., dplyr, ggplot2, tidymodels etc.

Most data in industry
lives in SQL databases

Source: R for Data Science

https://r4ds.had.co.nz/explore-intro.html#explore-intro

Key idea: query: table(s) → table

SQL provides a consistent grammar (Structured
Language) for asking and answering questions

(Queries) about your collected data

SQL grammar comes built-in with keywords (verbs)

Takeaway: these keywords (verbs) allow you to systematically query tables (nouns)

Thousands more observations

SQL Code

SELECT dest, month, day,
 MIN(arr_delay) AS mnd,
 MAX(arr_delay) AS mxd,
 AVG(arr_delay) AS avd
FROM flights
GROUP BY dest, month, day
ORDER BY dest, month DESC,
 day
LIMIT 10;

SQL::KEYWORDS follow an order of operations

Keywords execute in a diff. order than which they appear

Takeaway: grokking the SQL execution order enables us to better reason with our code

SQL Code

SELECT dest, month, day,
 MIN(arr_delay) AS mnd,
 MAX(arr_delay) AS mxd,
 AVG(arr_delay) AS avd
FROM flights
WHERE month IN (6, 12)
GROUP BY dest, month, day
ORDER BY dest, month DESC,
 day
LIMIT 10;

⏿
What we see

SELECT → FROM → WHERE → GROUP BY → ORDER BY → LIMIT

How SQL executes

FROM → WHERE → GROUP BY → SELECT → ORDER BY → LIMIT

Adapted from: Julia Evans

https://wizardzines.com/zines/sql/

SQL::KEYWORDS ⟷ dplyr::functions()

SQL keywords have a bidirectional link to dplyr verbs

Takeaway: dplyr developed this precise relationship to SQL by design over time

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

LIMIT

select(), mutate(), summarize()

specified input data frame/tibble

filter()

group_by()

group_by() %>% summarize() %>% filter()

arrange()

“head()” or “tail()”

⟷
⟷
⟷
⟷
⟷
⟷
⟷ Adapted from: Ian Cook

https://nyhackr.blob.core.windows.net/presentations/tidyquery-and-queryparser-Translating-SQL-Queries-to-dplyr-Pipelines_Ian-Cook.pdf

SQL::KEYWORDS → dplyr::functions() via tidyquery

Takeaway: tidyquery enables SQL syntax on tibbles and translation to dplyr

tidyquery on tibbles

tidyquery::query(
'SELECT dest, month, day,
 MIN(arr_delay) AS mnd,
 MAX(arr_delay) AS mxd,
 AVG(arr_delay) AS avd
FROM nycflights13::flights
GROUP BY dest, month, day
ORDER BY dest, month DESC,
 day
LIMIT 10;’)

tidyquery → dplyr

tidyquery::show_dplyr(
'SELECT dest, month, day,
 MIN(arr_delay) AS mnd,
 MAX(arr_delay) AS mxd,
 AVG(arr_delay) AS avd
FROM nycflights13::flights
GROUP BY dest, month, day
ORDER BY dest, month DESC,
 day
LIMIT 10;’)

resulting dplyr - amazing!

nycflights13::flights %>%
 group_by(dest, month,
day) %>%
 summarise(
mnd = min(arr_delay,
 na.rm = TRUE),
mxd = max(arr_delay,
 na.rm = TRUE),
avd = mean(arr_delay,
 na.rm = TRUE))
%>% ungroup() %>% head(10)

SQL::KEYWORDS → dplyr::functions() via dbplyr

Takeaway: dbplyr allows for dplyr code translation to SQL

dbplyr + dplyr

flight_summ <-
 tbl(NYC_CONN, "flights")
 group_by(dest, month,
day) %>%
 summarise(
mnd = min(arr_delay,
 na.rm = TRUE),
mxd = max(arr_delay,
 na.rm = TRUE),
avd = mean(arr_delay,
 na.rm = TRUE))
%>% ungroup() %>% head(10)

dbplyr::render_sql

flight_summ %>%
dbplyr::render_sql() %>%
 cat()

➕ ＝

resulting SQL - amazing!

SELECT
 `dest`, `month`, `day`,
 MIN(`arr_delay`) AS
`mnd`,
 MAX(`arr_delay`) AS
`mxd`,
 AVG(`arr_delay`) AS
`avd`
FROM `flights`
GROUP BY `dest`, `month`,
`day`
LIMIT 10

Adapted from: Source

https://stackoverflow.com/a/70711100/4687531

We have the means to bidirectionally translate SQL code to dplyr

tidyquery: SQL → dplyr

dbplyr: dplyr → SQL

Note: Translations may have limitations, e.g., multiple joins in tidyquery

Recap: SQL::KEYWORDS ⟷ dplyr::functions()

Takeaway: these amazing tools allow for bidirectional learning of SQL and dplyr

https://github.com/ianmcook/tidyquery#current-limitations

Always first aim to visualize your database before using SQL

What: Contains flight info for NYC departures to various US destinations in 2013

flights: all NYC departures in 2013

weather: hourly data for each airport

planes: construction info for each plane

airports: airport names and locations

airlines: two letter carrier codes/names

We’ll use the nycflights13 database for our analysis

Takeaway: building this mental picture up front gets us in the right SQL mindset

Source: nycflights13

https://github.com/hadley/r4ds/issues/757

SELECT ⟷ dplyr::select()

Advanced concepts

What are the unique flight carrier pairings for NYC based flights in 2013?

> SELECT DISTINCT carrier, flight FROM flights ORDER BY
carrier, flight;

This returns DISTINCT (unique) flight-carrier combinations

The ORDER BY is simply for viewing convenience

We can also SELECT DISTINCT variable combinations

SELECT ⟷ dplyr::mutate()

Advanced concepts

We can also use CASE WHEN to handle if-then statements

Answer to: how to create columns that are based conditionally on other columns?

Define a new variable to classify flights as arriving “early”, “on-time”, or “late”

SELECT year, month, day, arr_delay,

 CASE WHEN arr_delay < 0 THEN "Early"

 WHEN arr_delay = 0 THEN "On Time"

 WHEN arr_delay > 0 THEN "Late"

 ELSE "Unknown"

 END AS delay_type

 FROM flights LIMIT 10;

Takeaway: CASE WHEN enables if-then-else logic applied on other columns

SELECT ⟷ dplyr::summarize()

Advanced concepts

We can aggregate on columns using SELECT + DISTINCT

Answer to: how can we count/sum distinct values across a column?

How many distinct plane types are there?

> SELECT COUNT(DISTINCT type) AS tot_uniq_types from planes;

The DISTINCT works across the entire type column since we didn’t specify a group

Useful to compare and interpret the difference by using COUNT(*) instead

Takeaway: DISTINCT clause works well with aggregate functions (COUNT)

We can aggregate on groups using SELECT + DISTINCT

Answer to: how can we count/sum distinct values by different groups?

How many unique plane model types are there by manufacturer?

> SELECT manufacturer, COUNT(DISTINCT type) AS uniq_types from planes
GROUP BY manufacturer;

How many total plane model types are there by manufacturer?

> SELECT manufacturer, COUNT(*) AS tot_types from planes GROUP BY
manufacturer;

Takeaway: DISTINCT aggregations are very effective across groups of data

subqueries aka queries within queries

enable more automation with SQL

We can nest (sub)queries within other queries

Answer to: how can we get more automation over filtering, for example?

Q: Count total flights with destination codes starting with ‘M’, grouped by code

Hmm, let’s first get distinct destination codes starting with ‘M’

> SELECT DISTINCT dest FROM flights WHERE dest LIKE "M%";

It worked! We also learned to use the LIKE "M%" as a SQL wildcard matching

We have the 13 codes: ("MIA", "MCO", "MSP", "MSY", "MKE", "MEM", "MYR",

 "MDW", "MHT", "MSN", "MCI", "MTJ", "MVY")

We can nest (sub)queries within other queries (Cont’d)

Now that we have the destination codes, the query is straightforward

> SELECT dest, COUNT(*) as tot_flights

 FROM flights

 WHERE dest IN ("MIA", "MCO", "MSP", "MSY", "MKE", "MEM", "MYR", "MDW",

 "MHT", "MSN", "MCI", "MTJ", "MVY")

 GROUP BY dest

Great - but so much manual typing in the WHERE clause, so large room for error!

We can do better with a subquery approach

Now that we have the destination codes, the query is straightforward

> SELECT dest, COUNT(*) as tot_flights

 FROM flights

 WHERE dest IN (SELECT DISTINCT dest FROM flights WHERE dest LIKE "M%")

 GROUP BY dest

Amazing - the WHERE clause could work directly with the output of our subquery

We don’t have to change anything if there is a new destination starting with M

Takeaway: subqueries result in more automated, scalable, and expressive code

SQL joins aka connecting tables

with other tables

Motivation: How to get the count of total flights in Jun/Jul by plane carrier name?

> SELECT carrier, COUNT(*) as tot_flights

 FROM flights

 WHERE month IN (6, 7)

 GROUP BY carrier

How do we borrow information from other tables in SQL?

Almost there! But we want the carrier name, not carrier code.

So code 9E corresponds to name Endeavor Air Inc., for example.

How can we modify our query to obtain and use this carrier name information?

airlines

carrier code is a PRIMARY KEY, it
uniquely identifies each observation. It also
has the carrier name information in a separate
column.

flights

carrier code is a FOREIGN KEY that
corresponds to the carrier code PRIMARY
KEY in airlines. It is not a unique
identifier of observations in flights.

We need to understand the PRIMARY and FOREIGN KEY fields in our database

We first need to understand how the tables are linked

carrier code

carrier code + name
Source: R for Data Science

https://r4ds.hadley.nz/joins.html#keys

We can use the idea of a LEFT JOIN to link the keys

Let’s consider a toy example, taken from R for Data Science

Goal: to join all table y values on
table x using keys {1, 2, 3,
4}, but ensuring that we retain
only keys from table x.

The keys on the table
on the ‘left’ will be
retained in a LEFT
JOIN, i.e., table x.

Precisely as we wanted

https://r4ds.hadley.nz/joins.html#how-do-joins-work

Let’s apply a LEFT JOIN to our original question

> SELECT al.name AS airline, COUNT(*) as tot_flights

 FROM flights AS fl

 LEFT JOIN airlines AS al

ON al.carrier = fl.carrier

 WHERE month IN (6, 7)

 GROUP BY al.name

How do we borrow information from other tables in SQL?

The use of table aliases, e.g., al for airlines, avoids reference ambiguities

Takeaway: JOINS are powerful, and there are many more, i.e., INNER, FULL …

A reminder as to why I use SQL

I like using SQL because it’s fun and necessary

Specifically SQL allows me to ask and answer
precise questions on collected data, in a manner

that is both easy to reason with, communicate and
scales with data size.

Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. R for data
science. " O'Reilly Media, Inc.", 2023. [Link]

Wickham H (2022). nycflights13: Flights that Departed NYC in 2013. R package
version 1.0.2, [Link]

Cook, Ian. tidyquery and queryparser: Translating SQL Queries to dplyr Pipelines
[Link]

Teate, Renee MP (2021). SQL for data scientists: a beginner's guide for building
datasets for analysis. [Link]

Evans, Julia Become a SELECT star [Link]

References

https://r4ds.had.co.nz/index.html
https://nycflights13.tidyverse.org/index.html
https://nyhackr.blob.core.windows.net/presentations/tidyquery-and-queryparser-Translating-SQL-Queries-to-dplyr-Pipelines_Ian-Cook.pdf
https://sqlfordatascientists.com/
https://wizardzines.com/zines/sql/

