Data Engineering - Lecture 6

A practical approach to SQL - Part 2

Shamindra Shrotriya (CMU)

So *where* were we?

Data-driven workflows adopt an interactive pipeline

Takeaway: being able to efficiently extract SQL data is vital for success

Key idea: query: table(s) → table

SQL provides a **consistent grammar** (Structured Language) for asking and answering **questions** (Queries) about your collected data

SQL grammar comes built-in with keywords (verbs)

-	year 🗘	month [‡]	day 🗘	dep_time 🗘	sched_dep_time 🗘	dep_delay [‡]	arr_time 🗘
1	2013			517	515		830
2	2013			533	529	4	850
3	2013			542	540		923
	2013			544	545		1004
	2013			554	600	-6	812
	2013			554	558	-4	740
	2013			555	600		913
	2013			557	600	-3	709
	2013			557	600		838
	2013			558	600		753

SQL Code

```
SELECT dest, month, day,
MIN(arr_delay) AS mnd,
MAX(arr_delay) AS mxd,
AVG(arr_delay) AS avd
FROM flights
GROUP BY dest, month, day
ORDER BY dest, month DESC,
day
LIMIT 10;
```

		dest 🌻	month 🗘	day 🗘	mnd 🗘	mxd 🗘	avd 🗘
		ABQ			-36	-36	-36
		ABQ					-17
		ABQ			20	20	20
		ABQ					27
		ABQ					32
		ABQ			46	46	46
		ABQ					53
		ABQ			114	114	114
		ABQ					57
	10	ABQ	12	10	108	108	108

Thousands more observations

Takeaway: these keywords (verbs) allow you to systematically query tables (nouns)

SQL:: **KEYWORDS** follow an *order* of operations

Keywords execute in a diff. order than which they appear

Adapted from: Julia Evans

Takeaway: grokking the SQL execution order enables us to better reason with our code

SQL::KEYWORDS ↔ dplyr::functions()

SQL keywords have a **bidirectional** link to **dplyr** verbs

SELECT	\leftrightarrow	<pre>select(), mutate(), summarize()</pre>
FROM	\leftrightarrow	specified input data frame/tibble
WHERE	\leftrightarrow	filter()
GROUP BY	\leftrightarrow	group_by()
HAVING	\leftrightarrow	<pre>group_by() %>% summarize() %>% filter()</pre>
ORDER BY	\leftrightarrow	arrange()
LIMIT	\leftrightarrow	<pre>"head() " or "tail() " Adapted from: lan Cook</pre>

Takeaway: dplyr developed this precise relationship to SQL by design over time

SQL::KEYWORDS - dplyr::functions() Via tidyquery

tidyquery on tibbles

tidyquery > dplyr

Takeaway: tidyquery enables SQL syntax on tibbles and translation to dplyr

SQL::KEYWORDS - dplyr::functions() Via dbplyr

Takeaway: dbplyr allows for **dplyr** code translation to **SQL**

Adapted from: Source

Recap: SQL::KEYWORDS ↔ dplyr::functions()

We have the means to **bidirectionally translate** SQL code to dplyr

tidyquery:SQL → dplyr
dbplyr:dplyr → SQL

Note: Translations may have limitations, e.g., multiple joins in tidyquery

Takeaway: these amazing tools allow for bidirectional learning of SQL and dplyr

Always first aim to visualize your database before using SQL

We'll use the nycflights13 database for our analysis

What: Contains flight info for NYC departures to various US destinations in 2013

flights: all NYC departures in 2013

weather: hourly data for each airport

planes: construction info for each plane

airports: airport names and locations

airlines: two letter carrier codes/names

Takeaway: building this mental picture up front gets us in the right SQL mindset

SELECT ↔ dplyr::select() Advanced concepts

We can also **SELECT DISTINCT** variable combinations

What are the unique flight carrier pairings for NYC based flights in 2013?

> SELECT DISTINCT carrier, flight FROM flights ORDER BY
carrier, flight;

This returns **DISTINCT** (unique) flight-carrier combinations

The **ORDER BY** is simply for **viewing convenience**

SELECT ↔ dplyr::mutate() Advanced concepts

We can also use **CASE** WHEN to handle if-then statements

Answer to: how to create columns that are based conditionally on other columns?

Define a new variable to classify flights as arriving "early", "on-time", or "late"

```
SELECT year, month, day, arr_delay,
```

```
CASE WHEN arr delay < 0 THEN "Early"
```

WHEN arr delay = 0 THEN "On Time"

```
WHEN arr delay > 0 THEN "Late"
```

ELSE "Unknown"

END AS delay_type

```
FROM flights LIMIT 10;
```

Takeaway: CASE WHEN enables **if-then-else** logic applied on other columns

SELECT ↔ dplyr::summarize() Advanced concepts

We can aggregate on columns using **SELECT** + **DISTINCT**

Answer to: how can we count/sum distinct values across a column?

How many **distinct plane types** are there?

> SELECT COUNT (DISTINCT type) AS tot_uniq_types from planes;

The **DISTINCT** works **across** the **entire** type column since we didn't specify a group

Useful to **compare** and **interpret** the difference by using **COUNT**(*) instead

Takeaway: DISTINCT clause works well with aggregate functions (COUNT)

We can aggregate on groups using **SELECT** + **DISTINCT**

Answer to: how can we count/sum distinct values by different groups?

How many unique plane model types are there **by manufacturer**?

> SELECT manufacturer, COUNT(DISTINCT type) AS uniq_types from planes
GROUP BY manufacturer;

How many total plane model types are there by manufacturer?

> SELECT manufacturer, COUNT(*) AS tot_types from planes GROUP BY
manufacturer;

Takeaway: DISTINCT aggregations are very effective across groups of data

subqueries aka *queries within queries* enable more automation with SQL

We can nest (sub)queries within other queries

Answer to: how can we get more automation over filtering, for example?

Q: Count total flights with destination codes starting with 'M', grouped by code

Hmm, let's first get distinct destination codes starting with 'M'

> SELECT DISTINCT dest FROM flights WHERE dest LIKE "M%";

It worked! We also learned to use the **LIKE** "M%" as a SQL wildcard matching

We have the **13 codes**: ("MIA", "MCO", "MSP", "MSY", "MKE", "MEM", "MYR",

"MDW", "MHT", "MSN", "MCI", "MTJ", "MVY")

We can nest (sub)queries within other queries (Cont'd)

Now that we have the destination codes, the query is straightforward

```
> SELECT dest, COUNT(*) as tot_flights
```

```
FROM flights
```

WHERE dest IN ("MIA", "MCO", "MSP", "MSY", "MKE", "MEM", "MYR", "MDW", "MHT", "MSN", "MCI", "MTJ", "MVY")

```
GROUP BY dest
```

Great - but so much manual typing in the WHERE clause, so large room for error!

We can do better with a subquery approach

Now that we have the destination codes, the query is straightforward

```
> SELECT dest, COUNT(*) as tot_flights
```

FROM flights

WHERE dest IN (SELECT DISTINCT dest FROM flights WHERE dest LIKE "M%") GROUP BY dest

Amazing - the WHERE clause could work directly with the output of our subquery

We don't have to change anything if there is a new destination starting with M

Takeaway: subqueries result in more automated, scalable, and expressive code

SQL joins aka *connecting* tables with other tables

How do we **borrow information** from other tables in **SQL**?

Motivation: How to get the count of total flights in Jun/Jul by plane carrier name?

```
> SELECT carrier, COUNT(*) as tot_flights
FROM flights
WHERE month IN (6, 7)
GROUP BY carrier
```

carrier 🗘	tot_flights 🗘
9E	2931
AA	5639
AS	122
B6	9606
DL	8377
EV	9097
F9	113
FL	515
НА	61

Almost there! But we want the carrier *name*, not carrier *code*.

So code 9E corresponds to name Endeavor Air Inc., for example.

How can we modify our query to obtain and use this carrier name information?

We first need to understand how the tables are linked

We need to understand the **PRIMARY** and **FOREIGN KEY** fields in our database

airlines

carrier code is a **PRIMARY KEY**, it **uniquely identifies** each observation. It also has the carrier name information in a separate column.

flights

carrier code is a FOREIGN KEY that corresponds to the carrier code PRIMARY KEY in airlines. It is not a unique identifier of observations in flights.

We can use the idea of a **LEFT** JOIN to link the keys

Let's consider a toy example, taken from <u>R for Data Science</u>

Goal: to join all table y values on table x using keys {1, 2, 3, 4}, but ensuring that we retain only keys from table x.

The keys on the table on the 'left' will be retained in a LEFT JOIN, i.e., **table x**.

Precisely as we wanted

How do we **borrow information** from other tables in **SQL**?

The use of table aliases, e.g., al for airlines, avoids reference ambiguities

Takeaway: JOINS are powerful, and there are many more, i.e., INNER, FULL ...

A reminder as to *why* I use SQL

I like using SQL because it's *fun* and *necessary*

Specifically SQL allows me to ask and answer precise questions on collected data, in a manner that is both easy to *reason with*, *communicate* and *scales* with data size.

References

Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. *R for data science*. " O'Reilly Media, Inc.", 2023. [Link]

Wickham H (2022). *nycflights13: Flights that Departed NYC in 2013. R package* version 1.0.2, [Link]

Cook, Ian. *tidyquery and queryparser: Translating* SQL Queries to dplyr Pipelines [Link]

Teate, Renee MP (2021). SQL for data scientists: a beginner's guide for building datasets for analysis. [Link]

Evans, Julia *Become a SELECT star* [Link]