
Data Engineering - Lecture 5

A practical approach to SQL - Part 1

Shamindra Shrotriya (CMU)

So what does a typical data-driven workflow look like?

Data-driven workflows adopt an interactive pipeline

Takeaway: being able to efficiently extract SQL data is vital for success

We spend most of our time here in this course,
e.g., dplyr, ggplot2, tidymodels etc.

Most data in industry
lives in SQL databases

Source: R for Data Science

https://r4ds.had.co.nz/explore-intro.html#explore-intro

No - But they work brilliantly with SQL!

SQL databases allow you to persistently store and organize data

Support a streamlined Extract-Transform-Load (ETL) process for streaming data

Provide access management restrictions to specific data, e.g., health records

Allow for explicit linkages across tables (primary and foreign keys)

Enable indexes to be defined on tables for efficiency, e.g., date/time fields

Aren’t R/python/Julia alone sufficient for this purpose?

Takeaway: use R for accessing subsets of data from a SQL database for modeling

Key idea: query: table(s) → table

SQL provides a consistent grammar (Structured
Language) for asking and answering questions

(Queries) about your collected data

SQL tables are nouns, on which you ask targeted queries

Takeaway: data frames in R/Python are natural analogues of SQL tables

Tables are just 2D representations of data

A collection of columns and observations

These are similar to data frames/tibbles in R

“tibble” even phonetically sounds like “table”

You’re already used to them in R - yay!

Columns (variables)

O
bs

er
va

tio
ns

 (r
ow

s)

SQL grammar comes built-in with keywords (verbs)

Takeaway: these keywords (verbs) allow you to systematically query tables (nouns)

Thousands more observations

SQL Code

SELECT dest, month, day,
 MIN(arr_delay) AS mnd,
 MAX(arr_delay) AS mxd,
 AVG(arr_delay) AS avd
FROM flights
GROUP BY dest, month, day
ORDER BY dest, month DESC,
 day
LIMIT 10;

SQL::KEYWORDS ⟷ dplyr::functions()

SQL keywords have a bidirectional link to dplyr verbs

Takeaway: dplyr developed this precise relationship to SQL by design over time

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

LIMIT

select(), mutate(), summarize()

specified input data frame/tibble

filter()

group_by()

group_by() %>% summarize() %>% filter()

arrange()

“head()” or “tail()”

⟷
⟷
⟷
⟷
⟷
⟷
⟷ Adapted from: Ian Cook

https://nyhackr.blob.core.windows.net/presentations/tidyquery-and-queryparser-Translating-SQL-Queries-to-dplyr-Pipelines_Ian-Cook.pdf

A reminder as to why I use SQL

I like using SQL because it’s fun and necessary

Specifically SQL allows me to ask and answer
precise questions on collected data, in a manner

that is both easy to reason with, communicate and
scales with data size.

Always first aim to visualize your database before using SQL

What: Contains flight info for NYC departures to various US destinations in 2013

flights: all NYC departures in 2013

weather: hourly data for each airport

planes: construction info for each plane

airports: airport names and locations

airlines: two letter carrier codes/names

We’ll use the nycflights13 database for our analysis

Takeaway: building this mental picture up front gets us in the right SQL mindset

Source: nycflights13

https://github.com/hadley/r4ds/issues/757

sqlite: “small, fast, self-contained, high-reliability, full-featured, SQL database engine”

> install.packages(c("dittodb", "RSQLite", "nycflights13"))

> NYC_CONN <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

> dittodb::nycflights13_create_sql(NYC_CONN)

> fetch_query <- function(query, con = NYC_CONN) {

 return(DBI::dbGetQuery(con, query))

}

> fetch_query("SELECT * FROM flights LIMIT 11")

Let’s run sqlite3 queries within R for nycflights13

https://www.sqlite.org/footprint.html
https://www.sqlite.org/fasterthanfs.html
https://www.sqlite.org/selfcontained.html
https://www.sqlite.org/hirely.html
https://www.sqlite.org/fullsql.html

SELECT ⟷ dplyr::select()

Answer to: how can we select specific columns from a table

> SELECT <column_name> FROM <table_name>

Let’s glimpse 10 rows and all variables from the flights data

> SELECT * FROM flights LIMIT 10;

The * means return all (any) columns

SQL will return any 10 rows, so the original flights order may not be preserved

We can SELECT any column we want from a table

Takeaway: don’t assume that SQL results implicitly preserve original data ordering

> SELECT dep_time, arr_time, flight FROM flights LIMIT 10;

The equivalent dplyr code is

> flights %>% select(dep_time, arr_time) %>% head(10)

Note that original flights ordering is preserved in dplyr

SQL operates on sets of observations, which are an unordered collection

We’ll later control ordering explicitly in SQL using ORDER BY

We can SELECT any column we want from a table (cont’d)

Takeaway: always add a LIMIT clause when you are just selecting from a table

SELECT ⟷ dplyr::mutate()

We can also use SELECT to create new variables

Answer to: how can add new columns to a table, e.g., from existing ones?

Let’s get a measure of average speed (miles per hour) for each flight

> SELECT flight, distance/(air_time/60) AS speed FROM flights LIMIT 10;

We created the required column and named it AS speed

In dplyr we have the mutate() verb

> flights %>% mutate(speed = distance/(air_time/60)) %>% select(flight,
speed) %>% head(10)

Takeaway: SELECT serves to pick existing columns or to create new ones

SELECT ⟷ dplyr::summarize()

We can also aggregate on columns using SELECT

Answer to: how can create summary statistics across all rows?

SQL has built in aggregate functions: MIN, MAX, COUNT, SUM, AVG, …

> SELECT MIN(air_time) AS min_ar, MAX(air_time) AS max_ar from flights;

We didn’t need LIMIT here, since we returned a single aggregate observation

We can get the total number of observations using COUNT(*) operator

> SELECT COUNT(*) AS num_obs from flights;

Takeaway: Aggregations are most effective when working across groups of data

WHERE ⟷ dplyr::filter()

We can filter observations WHERE a criteria is met

Answer to: how can we subset observations which meet a given criteria?

Fetch all flights which departed from “JFK” (but limit to 10 observations)

> SELECT * FROM flights WHERE origin = "JFK" LIMIT 10;

Count flights which did not arrive at “JFK”

> SELECT COUNT(*) FROM flights WHERE dest != "JFK";

We can also use these comparison operators =, !=, <, <=, >, >=

Takeaway: Filtering operations in SQL are similar to R, except == is just = in SQL

How about WHERE a variable is IN or NOT IN a range?

Find 20 records which have a tail number matching either {“N593JB”, “N532UA”}

> SELECT * FROM flights WHERE origin IN (“N593JB”, “N532UA”) LIMIT 20;

Flights which did not depart in either {Dec, Jan} and had an arrival delay > 120 mins

> SELECT * FROM flights WHERE month NOT IN (1, 12) AND arr_delay > 120
LIMIT 10;

We could have written the following in dplyr

> flights %>% filter(!(month %in% c(1, 12)) & arr_delay > 120) %>% head(20)

Takeaway: It’s helpful to re-write queries in R, and pattern match to SQL

Missing values are NULL in SQL and dealt with differently

Get weather records where wind gust is not missing

> SELECT * FROM weather WHERE wind_gust IS NOT NULL LIMIT 20;

Note: wind_gust != NULL does not work, NULL values don’t match this way

In R, missing values are NA so we could do either of the following in dplyr

> weather %>% filter(!is.na(wind_gust))

> weather %>% drop_na(wind_gust) %>% head(20)

Takeaway: Be careful when dealing with missing (NULL) values in SQL

GROUP BY ⟷ dplyr::group_by()

We can GROUP BY variables and do aggregate calculations

Answer to: how can we compute aggregate summaries by groups across columns?

Get average arrival delay by flight origin

> SELECT origin, AVG(arr_delay) AS avd FROM flights GROUP BY origin;

Note that we renamed the average arrival delay column AS avd

In dplyr we could do the following

> flights %>% group_by(origin) %>% summarize(avd = mean(arr_delay, na.rm = TRUE))

Takeaway: similar verbs have slightly different implementations in R and SQL

We can also GROUP BY multiple variables

Get minimum, maximum, and average arrival delay by month day and destination

> SELECT dest, month, day,

MIN(arr_delay) AS mnd,

 MAX(arr_delay) AS mxd,

 AVG(arr_delay) AS avd

 FROM flights

 GROUP BY dest, month, day

 LIMIT 10;

Takeaway: SQL handles the variable groups, you specify which variables to group

HAVING ⟷ dplyr::group_by() %>%

 dplyr::summarize() %>%

 dplyr::filter()

Answer to: how can filter on the aggregated values?

Given number of plane engines, how many had more less than 200 manufacturers?

> SELECT engines, COUNT(*) AS tot_num

 FROM planes

 GROUP BY engines

 HAVING tot_num < 200;

We could have done HAVING COUNT(*) < 200;

We can filter aggregated values HAVING met a condition

Given number of plane engines, how many had more less than 200 manufacturers?

In dplyr we could do

> planes %>% group_by(engines) %>%

 summarize(tot_num = n()) %>% filter(tot_num < 200)

Or we could use the nice count verb to avoid an explicit group_by/filter

> planes %>% count(engines, name = "tot_num") %>% filter(tot_num < 200)

We can filter aggregated values HAVING met a condition

ORDER BY ⟷ dplyr::arrange()

Answer to: how to display tables sorted by one or more columns?

Get minimum, maximum, and average arrival delay by month day and destination

> SELECT dest, month, day,

 MIN(arr_delay) AS mnd, MAX(arr_delay) AS mxd,

 AVG(arr_delay) AS avd

 FROM flights

 GROUP BY dest, month, day

 ORDER BY dest, month DESC, day

 LIMIT 10;

We can ORDER BY many columns for displaying output

Takeaway: ordering is by default ascending, unless you specify descending

So what’s next…?

Table aliases: shorthand ways to reference specific tables in your queries

Subqueries: queries within queries

JOINS: how to connect information across tables

WINDOW functions: how to run non-aggregated operations across groups

So much more - but we’ll aim for the following

Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. R for data
science. " O'Reilly Media, Inc.", 2023. [Link]

Wickham H (2022). nycflights13: Flights that Departed NYC in 2013. R package
version 1.0.2, [Link]

Cook, Ian. tidyquery and queryparser: Translating SQL Queries to dplyr Pipelines
[Link]

Teate, Renee MP (2021). SQL for data scientists: a beginner's guide for building
datasets for analysis. [Link]

Evans, Julia Become a SELECT star [Link]

References

https://r4ds.had.co.nz/index.html
https://nycflights13.tidyverse.org/index.html
https://nyhackr.blob.core.windows.net/presentations/tidyquery-and-queryparser-Translating-SQL-Queries-to-dplyr-Pipelines_Ian-Cook.pdf
https://sqlfordatascientists.com/
https://wizardzines.com/zines/sql/

