
Data Engineering - Lecture 4

Embracing the UNIX philosophy - Part 2

Shamindra Shrotriya (CMU)

Key idea command: text → text

Takeaway: text is the universal interface for both input/output in the command line

The command line can be thought of as an

advanced text processing language

Answer to: can we search within files for a given word?

> grep “tibble” trend-analysis.R

Searches for the text tibble inside the file trend-analysis.R

This is UNIX equivalent of Cmd + F to search, without opening the file

grep: search within files

We learnt the basics of grep in the previous lecture

Kris Wilson (our colleague) approached me with an R package installation query

I had a script somewhere for just this task…something containing “REQ_PKGS”

Aha - time a quick grep search: grep -nr "REQ_PKGS" ~/REPOS

Got the result (first hit!) in a few seconds, hours of work saved in just one line

grep: a recent live use case!

Takeaway: UNIX is useful, and we should actively incorporate it in our workflow

Can we combine commands together nicely?

Syntax command1 | command2

The|takes the output of command1 and sends it as input to command2

Called the pipe operator, remind you of something? Yep %>% in R!

Can read the pipe (|) as the words “and then”, just like we did in R

Yep - we can chain command output input using | operator

Takeaway: The pipe provides a grammar for function composition in UNIX

View long file listing in paginated mode

> ls -l | less

View the first 10 rows of your command line history

> history 1 | head -n 10

Count the number of times you have used cd in your history

> history 1 | grep “cd” | wc -l

Applications of the pipe

Using sed to simplify text file editing

Answer to: how to delete lines, find/replace with fancy pattern matching, …

> sed -option ‘instructions’ filename

sed is a programming language in itself (it’s Turing complete!)

Our use case will be for basic text stream processing

sed is an all-purpose streaming text editor

Takeaway: Data science file pre-processing (csv/tsv), can be done using sed

https://catonmat.net/ftp/sed/turing.txt

Let’s create a test file as below:

> cat > ninja-way.csv

The prompt will appear blank - cat is waiting for you to type in file contents!

Type in the contents and then hit Ctrl-C to let cat know you’re done

The contents were sent via Slack

Let’s first create a test csv file for our testing purposes

Takeaway: cat can be used to read keyboard input and redirect (>) it to a file

Our test csv file has lots of issues…

Takeaway: Use less (or cat) to check the contents of the file you just created

unnecessary header info

some todos
blank lines + duplicates
comments

unnecessary footers

Delete the unwanted first 3 header rows

> sed ‘1,3d’ ninja-way.csv

This is equivalent to (perhaps) the more readable version

> tail -n +4 ninja-way.csv

Let’s start by deleting a bunch of unwanted lines with sed

Let’s delete empty or blank lines, an example of a regular expression (regex)

> sed '/^$/d'

The pattern here was to match lines starting (^)and ending ($) immediately

Delete any line starting with a #

> sed "/^#/d" ninja-way.csv

Finally delete lines that contain TODO or todo (case Insensitive flag)

> sed "/todo/Id" ninja-way.csv

Let’s delete more lines based on pattern matching

We could combine these sequence of deletions via pipes

> sed '1,3d' ninja-way.csv | sed '/todo/Id' | sed '/^$/d' | sed '/^#/d'

Or we can combine into a single ; separated sed command

> sed '1,3d;/todo/Id;/^$/d;/^#/d' ninja-way.csv

Process deletions using many pipes or a single sed pattern

Takeaway: Use the most readable option, to make future maintenance easier

We can also find and replace with sed easily

Find/replace in sed follows this basic syntax (case sensitive)

> sed 's/old-text/new-text/' filename

Let’s replace leaves with leaf

> sed 's/leaves/leaf/' ninja-way.csv

This only replaced the first occurrence of leaves in each line, instead do:

> sed 's/leaves/leaf/g' ninja-way.csv

For a global find/replace, i.e., replacing all matches

Our long pre-processing sed pipeline can be written more readably as follows:

sed '1,3d' ninja-way.csv | \

sed '/todo/Id' | \

sed '/^$/d' | \

sed '/^#/d' | \

sed 's/leaves/leaf/g' > ninja-way-clean-01.csv

Run less ninja-way-clean-01.csv to inspect our pre-processing

We can split long one-liners across multiple lines

Takeaway: Using \ as a new line separator, and > to redirect output to a new file

Using awk to process (columnar) text files

awk (aho, weinberger, kernighan) is both a function and a programming language

Like sed, awk is also Turing complete

awk is a very versatile text processing language

Takeaway: Practically speaking, awk is most useful for columnar text parsing

https://en.wikipedia.org/wiki/AWK#

Answer to: how to process any text data file, especially columnar data

> awk -option ‘instructions’ filename

sed and awk can replicate each other’s functionality

They work best hand in hand, with awk useful for handling columnar text data

awk is an all-purpose streaming text editor

Takeaway: use sed and awk together, with awk for columnar data processing

Let’s print the first name and last name from this ninja-way-clean-01.csv

> awk -F',' -v OFS="," '{ print $2,$3 }' ninja-way-clean-01.csv

The -F',' acknowledges that this was a ',' separated File (csv)

Then '{ print $2,$3 }' to ask awk to print columns 2 and 3 (1-index)

We can easily select specific text columns using awk

Let’s remove the first column from ninja-way-clean-01.csv

> awk -F',' -v OFS="," '{ printf $1=""; print }' ninja-way-clean-01.csv

This sets column 1 to “” (null), and then proceeds to print the remaining columns

We can also the first/last columns from ninja-way-clean-01.csv

> awk -F',' -v OFS="," '{ $1=$NF=""; print }' ninja-way-clean-01.csv

Here $NF stands for Number of Fields, awk shorthand for total columns

We can also easily unselect text columns using awk

Let’s print columns {2,3,5} from each line separated by a dash

> awk -F',' -v OFS="," '{ print $2 "-" $3 "-" $5 }' ninja-way-clean-01.csv

So far we’ve only selected columns, which is enough for us

awk can do so much more: math, conditional row filtering, …

Yes awk like working and programming with a text based spreadsheet

We can easily format selected columns using awk

Takeaway: Practically speaking, awk is most useful for columnar text parsing

There are numerous duplicate rows, which we want to remove

We could always cat ninja-way-clean-01.csv | sort | uniq

But this would return a sorted (shuffled) csv file - not good enough

> awk '!visited[$0]++' ninja-way-clean-01.csv

We have the data deduplicated in place (order preserved)

How does this work, it’s rather complicated…

awk can also deduplicate columns in-place

Takeaway: Search for specific awk patterns and run mini tests before using them

https://opensource.com/article/19/10/remove-duplicate-lines-files-awk

We used sed to create ninja-way-clean-01.csv

We can just now run this through our awk pipeline

awk -F',' -v OFS="," '{ $1=$NF=""; print }' ninja-way-clean-01.csv | \

awk '!visited[$0]++' | \

sed 's/^,//g' | \

sed 's/,$//g' > \

Ninja-way-clean-02.csv

You can use this nice awk example guide and incorporate it into your workflow

sed + awk give clean reproducible pipelines

http://tuxgraphics.org/~guido/scripts/awk-one-liner.html

We started with ninja-way.csv and ended with ninja-way-clean-02.csv

So what did all our text processing work achieve?

Takeaway: All of this pre-processing was done without leaving the command line!

Answer to: can we compare differences between two text files in UNIX?

Syntax diff old_file new_file

This is super useful for tracking changes between versions of the same file!

> diff ninja-way.csv ninja-way-clean-02.csv

Let’s compare the difference to our original file

Takeaway: diff designed for detailed tracking text processing changes

Some more fun use cases of pipes

Try this classic bash one-liner

history +1 | awk '{ printf $1 = ""; print }' | \

sort | uniq -c | sort -nr | \

head -n 20 | \

awk '{ printf $1 = ""; print }'

We just paste it into your shell and run each piece left-right until we get it working

Classic: your most commonly used UNIX commands

Takeaway: diff designed for detailed tracking text processing changes

Modern: building mini apps using fuzzy finder

fzf is a remarkable utility to fuzzy find files by name.

> find . -type d | \

fzf --multi --height=80% --border=sharp --preview='tree -C
{}'

We just created a directory tree browsing app in one line of code (see: source)

Takeaway: fzf is an indispensable tool for interactive search

https://github.com/junegunn/fzf
https://thevaluable.dev/practical-guide-fzf-example/

A reminder as to why I use the command line

I like using the command line because it’s fun

Specifically it allows me to directly have a
conversation with my operating system

