Data Engineering - Lecture 4

Embracing the UNIX philosophy - Part 2
Shamindra Shrotriya (CMU)

Key idea command: text » text

The command line can be thought of as an

advanced text processing language

Takeaway: text is the universal interface for both input/output in the command line

grep: search within files

Answer to: can we search within files for a given word?
> grep “tibble” trend-analysis.R
Searches for the text tibble inside the file trend-analysis.R

This is UNIX equivalent of Cmd + F to search, without opening the file

grep: a recent live use case!

We learnt the basics of grep in the previous lecture

Kris Wilson (our colleague) approached me with an R package installation query
| had a script somewhere for just this task...something containing “REQ_PKGS”
Aha - time a quick grep search: grep -nr "REQ PKGS" ~/REPOS

Got the result (first hit!) in a few seconds, hours of work saved in just one line

Takeaway: UNIX is useful, and we should actively incorporate it in our workflow

Can we combine commands together nicely?

Yep - we can chain command output input using | operator

Syntax commandl | command2

The | takes the output of command1 and sends it as input to command2

Called the pipe operator, remind you of something? Yep $>% in R!

Can read the pipe (|) as the words “and then”, just like we did in R

Takeaway: The pipe provides a grammar for function composition in UNIX

Applications of the pipe

View long file listing in paginated mode

> 1ls -1 | less

View the first 10 rows of your command line history

> history 1 | head -n 10

Count the number of times you have used cd in your history

> history 1 | grep “cd” | wc -1

Using sed to simplify text file editing

sed is an all-purpose streaming text editor

Answer to: how to delete lines, find/replace with fancy pattern matching, ...
> sed -option ‘instructions’ filename

sed is a programming language in itself (it's Turing complete!)

Our use case will be for basic text stream processing

Takeaway: Data science file pre-processing (csv/tsv), can be done using sed

https://catonmat.net/ftp/sed/turing.txt

Let’s first create a test csv file for our testing purposes

Let’s create a test file as below:

> cat > ninja-way.csv

The prompt will appear blank - cat is waiting for you to type in file contents!
Type in the contents and then hit Ctrl-C to let cat know you’re done

The contents were sent via Slack

Takeaway: cat can be used to read keyboard input and redirect (>) it to a file

Our test csv file has lots of issues...

> cat ninja-way.csv

This is a nice csv containing characters from the Anime: Naruto
This is based on a manga by various authors

See the following fields which contain the data

id, first_name, last_name,village,season_first_appearance, home
1,Naruto,Uzamaki, leaves, 1, leaves village
1,Naruto,Uzamaki, leaves, 1, leaves village
1,Naruto,Uzamaki, leaves, 1, leaves village
2,Sasuke,Uchiha, leaves, 1, leaves village

3,Sakura,Haruno, leaves, 1, leaves village

TODO: add more leaves village characters

4,Gaara,None, sand,2,sand village
4,Gaara,None, sand,2,sand village
5,Temari,Nara,sand,2,sand village

we should add more sand village characters

6,Sai,Yamanaka, leaves, 4, leaves village

#closing the file now

Takeaway: Use less (or cat) to check the contents of the file you just created

unnecessary header info

some todos
blank lines + duplicates
comments

unnecessary footers

Let’s start by deleting a bunch of unwanted lines with sed

Delete the unwanted first 3 header rows
> sed ‘'1,3d’ ninja-way.csv
This is equivalent to (perhaps) the more readable version

> tail -n +4 ninja-way.csv

Let’'s delete more lines based on pattern matching

Let’s delete empty or blank lines, an example of a regular expression (regex)
> sed '/*$/4’

The pattern here was to match lines starting (*) and ending ($) immediately
Delete any line starting with a #

> sed "/*#/d" ninja-way.csv

Finally delete lines that contain TODO or todo (case Insensitive flag)

> sed "/todo/Id" ninja-way.csv

Process deletions using many pipes or a single sed pattern

We could combine these sequence of deletions via pipes

> sed 'l,3d' ninja-way.csv | sed '/todo/Id' | sed '/*$/d' | sed '/*#/4d’

Or we can combine into a single ; separated sed command

> sed '1,3d;/todo/1Id;/*$/d;/*#/d' ninja-way.csv

Takeaway: Use the most readable option, to make future maintenance easier

We can also find and replace with sed easily

Find/replace in sed follows this basic syntax (case sensitive)

> sed 's/old-text/new-text/' filename

Let’s replace leaves with leaf

> sed 's/leaves/leaf/' ninja-way.csv

This only replaced the first occurrence of leaves in each line, instead do:
> sed 's/leaves/leaf/g' ninja-way.csv

For a global find/replace, i.e., replacing all matches

We can split long one-liners across multiple lines

Our long pre-processing sed pipeline can be written more readably as follows:
sed '1,3d' ninja-way.csv | \

sed '/todo/Id' | \

sed '/7$/d" | \

sed '/*#/d' | \

sed 's/leaves/leaf/g' > ninja-way-clean-0l.csv

Run less ninja-way-clean-01.csv toinspect our pre-processing

Takeaway: Using \ as a new line separator, and > to redirect output to a new file

Using awk to process (columnar) text files

awk is a very versatile text processing language

awk (aho, weinberger, kernighan) is both a function and a programming language

Like sed, awk is also Turing complete

Takeaway: Practically speaking, awk is most useful for columnar text parsing

https://en.wikipedia.org/wiki/AWK#

awk is an all-purpose streaming text editor

Answer to: how to process any text data file, especially columnar data
> awk -option ‘instructions’ filename
sed and awk can replicate each other’s functionality

They work best hand in hand, with awk useful for handling columnar text data

Takeaway: use sed and awk together, with awk for columnar data processing

We can easily select specific text columns using awk

Let’s print the first name and last name from this ninja-way-clean-01.csv

> awk -F',' -v OFS="," '{ print $2,$3 }' ninja-way-clean-0l.csv

The -F', ' acknowledges that thiswas a ', ' separated File (csv)

Then '{ print $2,$3 }' toask awk toprint columns 2 and 3 (l-index)

We can also easily unselect text columns using awk

Let’s remove the first column from ninja-way-clean-01.csv
> awk -F',' -v oFs="," '{ printf $1=""; print }' ninja-way-clean-0l.csv

This sets column 1 to “” (null), and then proceeds to print the remaining columns

We can also the first/last columns from ninja-way-clean-01.csv
> awk -F',' -v OFs="," '{ $1=$NF=""; print }' ninja-way-clean-0l.csv

Here SNF stands for Number of Fields, awk shorthand for total columns

We can easily format selected columns using awk

Let’s print columns {2,3,5} from each line separated by a dash
> awk -F',' -v OFS="," '{ print $2 "-" $3 "-" $5 }' ninja-way-clean-0l.csv
So far we’ve only selected columns, which is enough for us

awk can do so much more: math, conditional row filtering, ...

Yes awk like working and programming with a text based spreadsheet

Takeaway: Practically speaking, awk is most useful for columnar text parsing

awk can also deduplicate columns in-place

There are numerous duplicate rows, which we want to remove

We could always cat ninja-way-clean-0l.csv | sort | uniq
But this would return a sorted (shuffled) csv file - not good enough
> awk '!visited[$0]++' ninja-way-clean-0l.csv

We have the data deduplicated in place (order preserved)

How does this work, it’s rather complicated...

Takeaway: Search for specific awk patterns and run mini tests before using them

https://opensource.com/article/19/10/remove-duplicate-lines-files-awk

sed + awk give clean reproducible pipelines

We used sed to create ninja-way-clean-01.csv

We can just now run this through our awk pipeline

awk -F',' -v OFS="," '{ $1=$NF=""; print }' ninja-way-clean-0l.csv | \
awk ''visited[$0]++' | \

sed 's/*,//g' | \

sed 's/,$//g' > \

Ninja-way-clean-02.csv

You can use this nice awk example guide and incorporate it into your workflow

http://tuxgraphics.org/~guido/scripts/awk-one-liner.html

So what did all our text processing work achieve?

We started with ninja-way.csv and ended with ninja-way-clean-02.csv

> cat ninja-way.csv

This is a nice csv containing characters from the Anime: Naruto

This is based on a manga by various authors

See the following fields which contain the data > cat ninj a—-way-cC lean-02.csv

id, first_name, last_name,village,season_first_appearance, home

1,Naruto, Uzamaki, leaves, 1, leaves village first_name, last_name,village,season_first_appearance
1,Naruto,Uzamaki, leaves, 1, leaves village .
1,Naruto,Uzamaki, leaves, 1, leaves village NarUtoluzamakllleafll

2,Sasuke,Uchiha, leaves, 1, leaves village Na ruto Uzamaki -Lea_f: 1
’ ’ ’
Naruto,Uzamaki, leaf,1

3,Sakura,Haruno, leaves, 1, leaves village

TODO: add more leaves village characters Sasuke, Uchlha ’ leaf ’ 1
4,Gaara,None, sand,2,sand village Sakura ’ Haruno ’ leaf y 1

4,Gaara,None,sand,2,sand village
5,Temari,Nara,sand,2,sand village

Gaara,None, sand, 2
Gaara,None, sand, 2
Temari,Nara,sand,?2
Sai,Yamanaka, leaf, 4

we should add more sand village characters
6,S5ai,Yamanaka, leaves, 4, leaves village

#closing the file now

Takeaway: All of this pre-processing was done without leaving the command line!

Let’s compare the difference to our original file

Answer to: can we compare differences between two text files in UNIX?
Syntax diff old file new file
This is super useful for tracking changes between versions of the same file!

> diff ninja-way.csv ninja-way-clean-02.csv

Takeaway: diff designed for detailed tracking text processing changes

Some more fun use cases of pipes

Classic: your most commonly used UNIX commands

Try this classic bash one-liner

history +1 | awk '{ printf $1 = ""; print }' | \
sort | uniq -c¢ | sort -nr | \

head -n 20 | \

awk '{ printf $1 = ""; print }'

We just paste it into your shell and run each piece left-right until we get it working

Takeaway: diff designed for detailed tracking text processing changes

Modern: building mini apps using fuzzy finder

fzf is a remarkable utility to fuzzy find files by name.
>find . -type d | \

fzf --multi --height=80% --border=sharp --preview='tree -C

{}'

We just created a directory tree browsing app in one line of code (see: source)

Takeaway: £z£f is an indispensable tool for interactive search

https://github.com/junegunn/fzf
https://thevaluable.dev/practical-guide-fzf-example/

A reminder as to why | use the command line

| like using the command line because it’s fun

Specifically it allows me to directly have a
conversation with my operating system

