Data Engineering - Lecture 3

Embracing the UNIX philosophy - Part 1
Shamindra Shrotriya (CMU)

So where were we again?

What are the driving principles of data engineering tools?

Highly extensible (programmable) systems
Easily configurable - just send me the config file!
Structured approach to pipelining systems
Systematic specification of dependencies
Consistent grammar (“self-documenting”)

Parallel + distributed processing

| like using the command line because it’s fun

Specifically it allows me to directly have a
conversation with my operating system

Natural concerns you may have

Too much typing can’t we minimize this?

The command prompt is hard to navigate with L/R arrows, any easier way?
| forgot that cool command from last week, can | quickly retrieve it?

Can we easily run all of these commands on multiple files instead of one?

| can see some of these commands being useful, but can we combine them?

This is too much typing, is there a way to minimize this?

Yes - aliases to the rescuel!

> alias 11='1s -1’

Save in ~/ .bashrc and reload your terminal, and then type 11
> alias 1='1s’

> alias 1lh='1ls -h’

> alias lah=’'1ls -ah’

> alias lla=’1ls -ahl’

Takeaway: Keep going - use pneumonics, and keep them 3 characters or less

Some more fun aliases to save those precious keystrokes

> alias ..="ecd ..’; alias ...="cd ../..";
> alias md='mkdir -p’
> alias c=’clear’

> alias tl=’'tree --level=1l’; alias t2='tree --level=2’;

Takeaway: for persistent aliases, store them in ~/ .bashrc and reload terminal

Use tab key for autocompletions

Answer to: you know how a file starts, but not it’s full name

> cd ~; 1ls D now pause, and hit tab key

DROPBOX/ Desktop/ Documents/ Downloads/

> keep completing the entry and tab key to cycle through the options

> hit return key once you are happy with your selection, e.g., Downloads/

Takeaway: tab-complete is a crucial feature to limit memorization of names

brace expansion - giving existing commands new powers

Answer to: can we use sequences to generate new text/files/directories?
> echo {01..11}

0102 03 04 05 06 07 08 0910 11

This is looping in a succinct format, i.e., ‘syntactic sugar’

> echo {a..f}

abcdef

Works with lower(upper) case letters too

brace expansion - existing commands get new powers

> touch slides-{01..04}.Rmd

creates files! O1-slides.Rmd 02-slides.Rmd 03-slides.Rmd 04-slides.Rmd
> mkdir -p analysis {ahmed,pratik,natalia, yue}

creates subdirs! analysis_ahmed/, ..., analysis_yue/

> mkdir -p data/{external,interim,processed, raw}
R/src/{utils-gen.R,utils-dir.R,utils-model.R}
report/{final,draft/student {akshay,shamindra,matey}}; touch
README .md LICENSE Makefile report/final.qmd test as.rproj;

brace expansion - existing commands get new powers

> tree -L 4

data > mkdir -p data/{external,interim,processed, raw}
external R/src/{utils-gen.R,utils-dir.R,utils-model.R}
Lnter report/{final,draft/student {akshay,shamindra,ma
tey}}; touch README.md LICENSE Makefile

report/final.qmd test as.rproj;

processed

src
utils—-dir.R
utils—-gen.R
utils—-model.R . . .
report Produces this entire directory structure
draft
student_akshay
student_matey

student_shamindra

final

final.qgmd
LICENSE
Makefile . . .
R Takeaway: Brace expansions are highly economical

test_as.rproj

brace expansion teaches good reusable patterns

> cp trend-analysis{, copy!}.R

Same as running

> cp trend-analysis.R trend-analysis copy.R

Nice - because you don’t have to type trend-analysis twice (minimize typos!)
> mv trend-analysis{, old}.R

Renames (moves) trend-analysis.R t0 trend-analysis old.R

Takeaway: these design patterns reduce errors, and encourage useful conventions

command prompt is hard to navigate, any easier way?

Sure - keyboard shortcuts can simplify prompt navigation

L 1 cycle previous/next commands

Ctrl + a gotothe start of the prompt

Ctrl + k cleartyped contents from cursor till end of line
Ctrl + 1 clearscreen (same as running clear)

Ctrl + u clear out typed contents

Ctrl + w clear previous word

Ctrl + - undo previous terminal prompt action

Takeaway: Keep continually practicing these with mnemonics to internalize them

Can we quickly retrieve a command from our history?

Indeed - Ctrl + r to for reverse history search

Ctrl + r

New prompt appears, waiting for you to start reverse searching history

This gets even cooler with fuzzy finding (£z £), where search typos are forgiven

We’ll learn more about this next week

Can we run a command on multiple files of the same type?

Globs to the rescue!

> 1ls *.Rmd

Wildcard list out all Rmd files

> wc -1 *, (Rmd|html)

Line count all out all Rmd and html files
> cat *.Rmd

Concatenate all Rmd files and output to screen

First use 1s on globs especially before removing files

> rm -rf * _Rmd (see anissue here?)

There is a space between the * and .Rmd, all files (*) would be deleted!
Instead do this first

> 1s -1 * _Rmd andthenls -1 *_.Rmd (correct!)

This gives you safety by listing out files first, and then

> rm -rf * Rmd

Takeaway: use globs widely, and lean on 1s to use them responsibly

So what have we learned so far about UNIX commands?

A lot! We know how to view, navigate, manipulate files etc.

Navigation: cd, pwd, 1s, tree
Viewing: less, cat, echo, head, tail
Manipulating files and directories: mkdir, touch, cp, mv

Searching files and directories: £find, grep

Unix commands are very focused functions

Take 1s, it’s sole aim is just to list files and directories, that’s it
Take we -1, it’'s sole aim is just to count lines in a file, that’s it

Take mkdir, it’'s sole aim is just to create directories, that’s it

Take touch, it’'s sole aim is just to modify files or create them, that’s it

Takeaway: UNIX commands tend to do one (type of) thing, and do it really well

Let’s take another look at tree

> tree -L 4

Input: done via keyboard is just text

data
external

ey Text has whitespace/- separated structure

processed

All input is code (bash script)

src
utils—-dir.R
utils—-gen.R

utils—-model.R
report
draft
student_akshay The text is typically highly structured

student_matey

Output: default is to print text out to screen

student_shamindra
final
final.qgmd
LICENSE
Makefile
README . md
test_as.rproj

Key idea command: text » text

The command line can be thought of as an

advanced text processing language

Takeaway: text is the universal interface for both input/output in the command line

grep: search within files

Answer to: can we search within files for a given word?
> grep “tibble” trend-analysis.R
Searches for the text tibble inside the file trend-analysis.R

This is UNIX equivalent of Cmd + F to search, without opening the file

Can we combine commands together nicely?

Yep - we can chain command output input using | operator

Syntax commandl | command2

The | takes the output of commandl and sends it as input to command?2

Called the pipe operator, remind you of something? Yep $>% in R!

Can read the pipe (|) as the words “and then”, just like we did in R

Takeaway: The pipe provides a grammar for function composition in UNIX

Applications of the pipe

View long file listing in paginated mode

> 1ls -1 | less

View the top 10 rows of your command line history

> history 1 | head -n 10

Count the number of times you have used cd in your history

> history 1 | grep “cd” | wc -1

Stay tuned for many more applications of the pipe...

