
Data Engineering - Lecture 3

Embracing the UNIX philosophy - Part 1

Shamindra Shrotriya (CMU)

So where were we again?

What are the driving principles of data engineering tools?

Highly extensible (programmable) systems

Easily configurable - just send me the config file!

Structured approach to pipelining systems

Systematic specification of dependencies

Consistent grammar (“self-documenting”)

Parallel + distributed processing

I like using the command line because it’s fun

Specifically it allows me to directly have a
conversation with my operating system

Too much typing can’t we minimize this?

The command prompt is hard to navigate with L/R arrows, any easier way?

I forgot that cool command from last week, can I quickly retrieve it?

Can we easily run all of these commands on multiple files instead of one?

I can see some of these commands being useful, but can we combine them?

Natural concerns you may have

This is too much typing, is there a way to minimize this?

> alias ll=’ls -l’

Save in ~/.bashrc and reload your terminal, and then type ll

> alias l=’ls’

> alias lh=’ls -h’

> alias lah=’ls -ah’

> alias lla=’ls -ahl’

Yes - aliases to the rescue!

Takeaway: Keep going - use pneumonics, and keep them 3 characters or less

> alias ..=’cd ..’; alias ...=’cd ../..’;

> alias md=’mkdir -p’

> alias c=’clear’

> alias t1=’tree --level=1’; alias t2=’tree --level=2’;

Some more fun aliases to save those precious keystrokes

Takeaway: for persistent aliases, store them in ~/.bashrc and reload terminal

Answer to: you know how a file starts, but not it’s full name

> cd ~; ls D now pause, and hit tab key

DROPBOX/ Desktop/ Documents/ Downloads/

> keep completing the entry and tab key to cycle through the options

> hit return key once you are happy with your selection, e.g., Downloads/

Use tab key for autocompletions

Takeaway: tab-complete is a crucial feature to limit memorization of names

Answer to: can we use sequences to generate new text/files/directories?

> echo {01..11}

01 02 03 04 05 06 07 08 09 10 11

This is looping in a succinct format, i.e., ‘syntactic sugar’

> echo {a..f}

a b c d e f

Works with lower(upper) case letters too

brace expansion - giving existing commands new powers

> touch slides-{01..04}.Rmd

creates files! 01-slides.Rmd 02-slides.Rmd 03-slides.Rmd 04-slides.Rmd

> mkdir -p analysis_{ahmed,pratik,natalia,yue}

creates subdirs! analysis_ahmed/, … , analysis_yue/

> mkdir -p data/{external,interim,processed,raw}
R/src/{utils-gen.R,utils-dir.R,utils-model.R}
report/{final,draft/student_{akshay,shamindra,matey}}; touch
README.md LICENSE Makefile report/final.qmd test_as.rproj;

brace expansion - existing commands get new powers

> mkdir -p data/{external,interim,processed,raw}
R/src/{utils-gen.R,utils-dir.R,utils-model.R}
report/{final,draft/student_{akshay,shamindra,ma
tey}}; touch README.md LICENSE Makefile
report/final.qmd test_as.rproj;

Produces this entire directory structure

brace expansion - existing commands get new powers

Takeaway: Brace expansions are highly economical

brace expansion teaches good reusable patterns

> cp trend-analysis{,_copy}.R

Same as running

> cp trend-analysis.R trend-analysis_copy.R

Nice - because you don’t have to type trend-analysis twice (minimize typos!)

> mv trend-analysis{,_old}.R

Renames (moves) trend-analysis.R to trend-analysis_old.R

Takeaway: these design patterns reduce errors, and encourage useful conventions

command prompt is hard to navigate, any easier way?

↓↑ cycle previous/next commands

Ctrl + a go to the start of the prompt

Ctrl + k clear typed contents from cursor till end of line

Ctrl + l clear screen (same as running clear)

Ctrl + u clear out typed contents

Ctrl + w clear previous word

Ctrl + - undo previous terminal prompt action

Sure - keyboard shortcuts can simplify prompt navigation

Takeaway: Keep continually practicing these with mnemonics to internalize them

Can we quickly retrieve a command from our history?

Ctrl + r

New prompt appears, waiting for you to start reverse searching history

This gets even cooler with fuzzy finding (fzf), where search typos are forgiven

We’ll learn more about this next week

Indeed - Ctrl + r to for reverse history search

Can we run a command on multiple files of the same type?

> ls *.Rmd

Wildcard list out all Rmd files

> wc -l *.(Rmd|html)

Line count all out all Rmd and html files

> cat *.Rmd

Concatenate all Rmd files and output to screen

Globs to the rescue!

> rm -rf * .Rmd (see an issue here?)

There is a space between the * and .Rmd, all files (*) would be deleted!

Instead do this first

> ls -l * .Rmd and then ls -l *.Rmd (correct!)

This gives you safety by listing out files first, and then

> rm -rf *.Rmd

First use ls on globs especially before removing files

Takeaway: use globs widely, and lean on ls to use them responsibly

So what have we learned so far about UNIX commands?

A lot! We know how to view, navigate, manipulate files etc.

Navigation: cd, pwd, ls, tree

Viewing: less, cat, echo, head, tail

Manipulating files and directories: mkdir, touch, cp, mv

Searching files and directories: find, grep

Take ls, it’s sole aim is just to list files and directories, that’s it

Take wc -l, it’s sole aim is just to count lines in a file, that’s it

Take mkdir, it’s sole aim is just to create directories, that’s it

…

Take touch, it’s sole aim is just to modify files or create them, that’s it

Unix commands are very focused functions

Takeaway: UNIX commands tend to do one (type of) thing, and do it really well

Let’s take another look at tree

Input: done via keyboard is just text

Text has whitespace/- separated structure

All input is code (bash script)

Output: default is to print text out to screen

The text is typically highly structured

Key idea command: text → text

Takeaway: text is the universal interface for both input/output in the command line

The command line can be thought of as an

advanced text processing language

Answer to: can we search within files for a given word?

> grep “tibble” trend-analysis.R

Searches for the text tibble inside the file trend-analysis.R

This is UNIX equivalent of Cmd + F to search, without opening the file

grep: search within files

Can we combine commands together nicely?

Syntax command1 | command2

The|takes the output of command1 and sends it as input to command2

Called the pipe operator, remind you of something? Yep %>% in R!

Can read the pipe (|) as the words “and then”, just like we did in R

Yep - we can chain command output input using | operator

Takeaway: The pipe provides a grammar for function composition in UNIX

View long file listing in paginated mode

> ls -l | less

View the top 10 rows of your command line history

> history 1 | head -n 10

Count the number of times you have used cd in your history

> history 1 | grep “cd” | wc -l

Applications of the pipe

Stay tuned for many more applications of the pipe…

