
Data Engineering - Lecture 2

Getting comfortable with the UNIX philosophy

Shamindra Shrotriya (CMU)

So where were we?

What are the driving principles of data engineering tools?

Highly extensible (programmable) systems

Easily configurable - just send me the config file!

Structured approach to pipelining systems

Systematic specification of dependencies

Consistent grammar (“self-documenting”)

Parallel + distributed processing

Do we need to learn all these tools to be a data-engineer?

Is there an alternative structured way to approach learning these these data
engineering principles, and deeply internalize them in our daily workflow?

Definitely - we just need to travel back in time to the present!

We should go back and learn UNIX, SQL, tmux, Make, etc.

Takeaway: Developed over past six decades, and still going strong today!

Starting UNIX: The terminal and the Shell

Terminal App

Terminal Prompt

Takeaway: We use a language called bash to enter our commands at the prompt

Let’s emulate basic operations we typically do via a GUI

Navigation

Manipulating files/directories

Inspecting contents

…

Searching through files/directories and their contents

Recap: viewing files and directories in UNIX

How do we list all files in the active directory? > ls

Include hidden (“.”, dot) files? > ls -a

Include metadata, e.g., date mod? > ls -l

Make file sizes human readable? > ls -h

All of the above? > ls -ahl

Recap: fast directory navigation in UNIX

Change to HOME directory? > cd ~

Change back to previous directory? > cd -

Change to parent directory > cd ..

Documentation on cd? > man cd

Show directory tree with 2 levels of nesting > tree -L 2

Print the working directory > pwd

Recap: manipulating files/directories in UNIX

Copy .bashrc to ~/.bashrc > cp .bashrc ~/.bashrc

Move .bashrc to ~/.bashrc > mv .bashrc ~/.bashrc

Move and rename .bashrc to ~/.bashrc2 > mv .bashrc ~/.bashrc2

Rename .bashrc to .bashrc2 > mv .bashrc .bashrc2

Make a nested subdir ./data/raw > mkdir -p data/raw

Recap: file/content viewing in UNIX

Get the line count for ~/.bashrc > wc -l .bashrc

Get the word count for ~/.bashrc > wc -w .bashrc

Interactively inspect ~/.bashrc in pager > less ~/.bashrc

Output contents of schedule.csv > cat schedule.csv

View top 5 rows of schedule.csv > head schedule.csv

View bottom 5 rows of schedule.csv > tail schedule.csv

Is it the command line vs. GUIs?

Nope! Command line + GUIs = 💙
Our primary goal is to become a productive and happy data engineer/scientist

Use the best tool for the given task!

Does your task involve a lot of animation, graphic previews, visual demos? GUI!

Does your task involve a lot of text driven processing

> file navigation, manipulation, previews, searching, replacing? Command line

Takeaway: using both GUI/UNIX appropriately will improve your work productivity!

Some additional useful bash commands

history: storing our command history for easy review

Answer to: can we see all* the commands we’ve previously typed in bash?

> history

Note: It typically ignores the calls to the history command itself :)

Key: let bash keep track, and treat history like an on-demand file for your review

less: interactively inspect a file

Answer to: can we pull up file contents and interact with them (searching etc)?

> less file1.Rmd

“ephemeral” paginated print out contents of file1.Rmd

Once you press “q”, the print out is closed screen space is freed up again

Key: less discourages context-switching away from the terminal!

Answer to: can alphanumerically sort the contents of a text file?

> sort ~/temp.txt

Sorts a file in ascending (alphabetical) order

> sort -r ~/temp.txt

Sorts a file in reverse (alphabetical) order

> sort -n ~/temp.txt

Sorts a file in ascending (numeric) order

sort: sort contents of a (text) file

Answer to: can we quickly filter files of a given type?

> find . -type f -name '*.R'

Finds all R files in the current directory

> find ~ -type d -iname '*lib*'

Find directories matching a given name, in case-insensitive mode

> find root_path -maxdepth 2 -size +500k -size -10M

Find files matching a given size range, limiting the recursive depth to "2"

find: find files or directories

Too much typing can’t we minimize this?

The command prompt is hard to navigate with L/R arrows, any easier way?

I forgot that cool command from last week, can I quickly retrieve it?

Can we easily run all of these commands on multiple files instead of one?

I can see some of these commands being useful, but can we combine them?

Natural concerns you may have

This is too much typing, is there a way to minimize this?

> alias ll=’ls -l’

Save in ~/.bashrc and reload your terminal, and then type ll

> alias l=’ls’

> alias lh=’ls -h’

> alias lah=’ls -ah’

> alias lla=’ls -ahl’

Keep going - use pneumonics, and keep them 3 characters or less

Yes - aliases to the rescue!

> alias ..=’cd ..’; alias ...=’cd ../..’;

> alias md=’mkdir -p’

> alias c=’clear’

> alias t1=’tree --level=1’; alias t2=’tree --level=2’;

Some more fun aliases to save those precious keystrokes

Takeaway: for persistent aliases, store them in ~/.bashrc and reload terminal

Answer to: can we use sequences to generate new text/files/directories?

> echo {01..11}

01 02 03 04 05 06 07 08 09 10 11

This is looping in a succinct format, i.e., ‘syntactic sugar’

> echo {a..f}

a b c d e f

Works with lower(upper) case letters too

brace expansion - giving existing commands new powers

> touch slides-{01..04}.Rmd

creates files! 01-slides.Rmd 02-slides.Rmd 03-slides.Rmd 04-slides.Rmd

> mkdir -p analysis_{ahmed,pratik,natalia,yue}

creates subdirs! analysis_ahmed/, … , analysis_yue/

> mkdir -p data/{external,interim,processed,raw}
R/src/{utils-gen.R,utils-dir.R,utils-model.R}
report/{final,draft/student_{akshay,shamindra,matey}}; touch
README.md LICENSE Makefile report/final.qmd test_as.rproj;

brace expansion - existing commands get new powers

> mkdir -p data/{external,interim,processed,raw}
R/src/{utils-gen.R,utils-dir.R,utils-model.R}
report/{final,draft/student_{akshay,shamindra,ma
tey}}; touch README.md LICENSE Makefile
report/final.qmd test_as.rproj;

< Produces this entire directory structure

Brace expansions are amazing - use em’!

brace expansion - existing commands get new powers

command prompt is hard to navigate, any easier way?

Ctrl + a go to the start of the prompt

Ctrl + k clear typed contents from cursor till end of line

Ctrl + l clear screen

Ctrl + u clear typed contents

Ctrl + w clear previous word

Sure - keyboard shortcuts can simplify prompt navigation

Can we quickly retrieve a command from our history?

Ctrl + r

New prompt appears, waiting for you to start reverse searching

This gets even cooler with fuzzy finding (fzf), where search typos are forgiven

We’ll learn more about this next week

Indeed - Ctrl + r to for reverse history search

Can we run a command on multiple files of the same type?

> ls *.Rmd

Wildcard list out all Rmd files

> wc -l *.(Rmd|html)

Line count all out all Rmd and html files

> cat *.Rmd

Concatenate all Rmd files and output to screen

Globs to the rescue!

Can we combine commands together nicely? Next week :)

