Data Engineering - Lecture 2

Getting comfortable with the UNIX philosophy
Shamindra Shrotriya (CMU)

So where were we?

What are the driving principles of data engineering tools?

Highly extensible (programmable) systems
Easily configurable - just send me the config file!
Structured approach to pipelining systems
Systematic specification of dependencies
Consistent grammar (“self-documenting”)

Parallel + distributed processing

Do we need to learn all these tools to be a data-engineer?

Is there an alternative structured way to approach learning these these data
engineering principles, and deeply internalize them in our daily workflow?

Definitely - we just need to travel back in time to the present!

We should go back and learn UNIX, SQL, tmux, Make, etc.

Takeaway: Developed over past six decades, and still going strong today!

Starting UNIX: The terminal and the Shell

Terminal Prompt

N

Terminal App

Takeaway: We use a language called bash to enter our commands at the prompt

Let’s emulate basic operations we typically do via a GUI

Navigation
Manipulating files/directories

Inspecting contents

Searching through files/directories and their contents

Recap: viewing files and directories in UNIX

How do we list all files in the active directory? > ls

Include hidden (*, dot) files? > ls -a
Include metadata, e.g., date mod? > 1ls -1
Make file sizes human readable? > 1ls -h

All of the above? > 1ls -ahl

Recap: fast directory navigation in UNIX

Change to HOME directory?
Change back to previous directory?
Change to parent directory
Documentation on cd?

Show directory tree with 2 levels of nesting

Print the working directory

cd ~
cd -
cd ..
man cd

tree -L 2

pwd

Recap: manipulating files/directories in UNIX

Copy .bashrcto ~/.bashrc

Move .bashrcto ~/.bashrc

Move and rename .bashrcto ~/.bashrc?2
Rename .bashrcto .bashrc?2

Make a nested subdir . /data/raw

>

>

>

cp

mv

mv

mv

.bashrc ~/ .bashrc
.bashrc ~/ .bashrc

.bashrc ~/ .bashrc?2

.bashrc .bashrc2

mkdir -p data/raw

Recap: file/content viewing in UNIX

Get the line count for ~/ .bashrc

Get the word count for ~/ .bashrc
Interactively inspect ~/ .bashrc in pager
Output contents of schedule.csv

View top 5 rows of schedule.csv

View bottom 5 rows of schedule.csv

wc -1 .bashrc
wc -w .bashrc
less ~/.bashrc
cat schedule.csv
head schedule.csv

tail schedule.csv

Is it the command line vs. GUIs?

Nope! Command line + GUIs = @

Our primary goal is to become a productive and happy data engineer/scientist
Use the best tool for the given task!

Does your task involve a lot of animation, graphic previews, visual demos? GUI!
Does your task involve a lot of text driven processing

> file navigation, manipulation, previews, searching, replacing? Command line

Takeaway: using both GUI/UNIX appropriately will improve your work productivity!

Some additional useful bash commands

history: storing our command history for easy review

Answer to: can we see all* the commands we’ve previously typed in bash?

> history

Note: It typically ignores the calls to the history command itself :)

Key: let bash keep track, and treat history like an on-demand file for your review

less: interactively inspect a file

Answer to: can we pull up file contents and interact with them (searching etc)?
> less filel.Rmd

“ephemeral” paginated print out contents of £ilel.Rmd

Once you press “q”, the print out is closed screen space is freed up again

Key: less discourages context-switching away from the terminal!

sort: sort contents of a (text) file

Answer to: can alphanumerically sort the contents of a text file?
> sort ~/temp.txt

Sorts a file in ascending (alphabetical) order

> sort -r ~/temp.txt

Sorts a file in reverse (alphabetical) order

> sort -n ~/temp.txt

Sorts a file in ascending (numeric) order

find: £ind files or directories

Answer to: can we quickly filter files of a given type?

> find . -type £ -name '*_R'

Finds all R files in the current directory

> find ~ -type d -iname '*lib¥*'

Find directories matching a given name, in case-insensitive mode

> find root path -maxdepth 2 -size +500k -size -10M

Find files matching a given size range, limiting the recursive depth to "2"

Natural concerns you may have

Too much typing can’t we minimize this?

The command prompt is hard to navigate with L/R arrows, any easier way?
| forgot that cool command from last week, can | quickly retrieve it?

Can we easily run all of these commands on multiple files instead of one?

| can see some of these commands being useful, but can we combine them?

This is too much typing, is there a way to minimize this?

Yes - aliases to the rescuel!

> alias 11='1s -1’

Save in ~/ .bashrc and reload your terminal, and then type 11
> alias 1='1s’

> alias 1lh='1ls -h’

> alias lah=’'1ls -ah’

> alias 1lla=’'1ls -ahl’

Keep going - use pneumonics, and keep them 3 characters or less

Some more fun aliases to save those precious keystrokes

> alias ..="ecd ..’; alias ...="cd ../..";
> alias md='mkdir -p’
> alias c=’clear’

> alias tl=’'tree --level=1l’; alias t2='tree --level=2’;

Takeaway: for persistent aliases, store them in ~/ .bashrc and reload terminal

brace expansion - giving existing commands new powers

Answer to: can we use sequences to generate new text/files/directories?
> echo {01..11}

0102 03 04 05 06 07 08 0910 11

This is looping in a succinct format, i.e., ‘syntactic sugar’

> echo {a..f}

abcdef

Works with lower(upper) case letters too

brace expansion - existing commands get new powers

> touch slides-{01..04}.Rmd

creates files! O1-slides.Rmd 02-slides.Rmd 03-slides.Rmd 04-slides.Rmd
> mkdir -p analysis {ahmed,pratik,natalia, yue}

creates subdirs! analysis_ahmed/, ..., analysis_yue/

> mkdir -p data/{external,interim,processed, raw}
R/src/{utils-gen.R,utils-dir.R,utils-model.R}
report/{final,draft/student {akshay,shamindra,matey}}; touch
README .md LICENSE Makefile report/final.qmd test as.rproj;

brace expansion - existing commands get new powers

> tree -L 4

data > mkdir -p data/{external,interim,processed, raw}
external R/src/{utils-gen.R,utils-dir.R,utils-model.R}
Lnter report/{final,draft/student {akshay,shamindra,ma
tey}}; touch README.md LICENSE Makefile

report/final.qmd test as.rproj;

processed

src
utils—-dir.R
utils—-gen.R
utils—-model.R . . .
report < Produces this entire directory structure
draft
student_akshay
student_matey

student_shamindra

final

final.qgmd
LICENSE
Makefile
README . md
test_as.rproj

Brace expansions are amazing - use em’!

command prompt is hard to navigate, any easier way?

Sure - keyboard shortcuts can simplify prompt navigation

Ctrl + a goto the start of the prompt

Ctrl + k cleartyped contents from cursor till end of line
Ctrl + 1 clear screen

Ctrl + u cleartyped contents

Ctrl + w clear previous word

Can we quickly retrieve a command from our history?

Indeed - Ctrl + r to for reverse history search

Ctrl + r

New prompt appears, waiting for you to start reverse searching

This gets even cooler with fuzzy finding (£z £), where search typos are forgiven

We’ll learn more about this next week

Can we run a command on multiple files of the same type?

Globs to the rescue!

> 1ls *.Rmd

Wildcard list out all Rmd files

> wc -1 *, (Rmd|html)

Line count all out all Rmd and html files
> cat *.Rmd

Concatenate all Rmd files and output to screen

Can we combine commands together nicely? Next week :)

